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Abstract:  

Climate policy will predominantly affect industries that primarily rely on fossil fuels, such as 

steelmaking. Within these industries, exposure may be different by country according to the 

energy-intensity of national plants. We estimate the effect of coal prices on steel plant location 

worldwide and production preferences for BOF, a polluting technology, and EAF, a greener one. 

A 1% increase in national coal prices reduces BOF installed capacity by around 0.37%, while it 

has no statistically significant impact on EAF capacity. We simulate the implementation of a 

stringent European carbon market with no border adjustment and find a non-negligible shift in steel 

production outside Europe, with a concomitant impact on the technologies employed to produce 

steel. If applied worldwide, the same policy would primarily affect production in Asia, which relies 

on BOF and currently benefits from lower coal prices than those expected to emerge in the future. 
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1. Introduction           

The Paris Agreement (2015) has set the ambitious objective of limiting global warming below 2°C. 

It entrusts the Parties to determine their national contribution to this target according to domestic 

circumstances and capabilities. While the Nationally Determined Contributions (NDCs) of the 

Paris agreement allowed solving the deadlock of past failed negotiations, the aggregate efforts 

listed in all the NDCs are largely insufficient to achieve the below 2°C target. In that regard, only 

a small number of independent carbon schemes are currently operative (e.g. the EU, Japan, 

California and its partners in the US and Canada). In all these schemes, the price of carbon is far 

below its social cost as estimated by integrated impact assessment models.1 One important reason 

why carbon prices are low on these markets comes from the risk that regulated industries lose 

competitiveness if other countries do not implement similar schemes. In energy-intensive sectors, 

largely exposed to international competition, unilaterally implementing a carbon tax or trading 

scheme may push industries to relocate elsewhere.  

In this paper, we estimate the effect of changes in coal prices on steel plant location worldwide. 

Steel represents 27% of all greenhouse gas emissions (GHG) from industry (IEA, 2017b). We 

explicitly focus on the impact of coal prices on the steel industry because 75% of all its CO2 

emissions come from the burning of coking coal in Basic Oxygen Furnaces (BOF) (Columbia 

Climate Center, 2012). However, we can expect that coal prices have heterogeneous impacts across 

production processes because a less coal-intensive process, Electric Arc Furnaces (EAF), can also 

be used to produce steel. EAF is a recycling technology that cuts GHG emissions by 75% with 

 
1 Nordhaus (2017) estimates that the social cost of carbon is around $31/tCO2

 eq. for the current period. Yet, in 2015, the traded price of carbon 
ranged from $1 to $13/tCO2

 eq. worldwide, and 90% of carbon permits were traded at less than $10/tCO2
 eq. (WBG and ECOFYS, 2015). In the 

EU, the carbon price oscillated between $3 and $10/tCO2
 eq. between 2013 and 2015 (Marcu, 2016). 
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respect to BOF.2 

Looking jointly at the effect of energy price shocks on plant location and production preferences 

constitutes the main contribution of this paper. The two are likely to interact. Even though changes 

of location may be encouraged by the availability of low coal prices in some countries, the choice 

to relocate will be ultimately dependent on the cost of staying, which depends on the availability 

of low-pollution technologies or the potential for their development. Following increases in coal 

prices, we find relocation effects for the dirtiest steel firms as well as increases in the diffusion of 

the low-polluting technology. However, because the low-polluting technology is a recycling 

technology that requires scrap, there are limits to its diffusion even under high coal prices. 

This paper relies on steel plant data (1960-2014) collected by James King and merged with data on 

coal prices. We use a unit-level econometric model to correlate the size of national steelmaking 

industries to coal price shocks. Our setting circumvents several major identification issues. First, 

we account for the difference between current and expected coal prices by approximating coal price 

expectations with autoregressive integrated moving average models (ARIMA). We then rely on a 

pre-sample mean estimator (Blundell et al., 2002) to account for coal price endogeneity and the 

risk of weak instrumentation. Complementary robustness checks include tests for instrument 

exogeneity and several specification changes, for example in the definition of coal prices, or the 

use of an alternative estimator (system GMM). We also make sure that our results are not driven 

by the concomitant evolution of the prices of the other main steel production inputs: iron ore, 

electricity and scrap.  

We find that an increase in coal prices at national level has a negative effect on the size of steel 

 
2 This process also relies indirectly on coal since it employs electricity that is generated from coal: globally, more than 70% of the GHG emissions 

from power generation are caused by coal (IEA, 2017a). 
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manufacturing. In our preferred specification, a 1% increase in coal prices reduces BOF production 

capacity by around 0.37%, while it has no impact on EAF capacity. As a result, both the size of 

production and its composition are influenced by coal price regimes.  

We indirectly assess the effect of the introduction of ambitious climate policies on national steel 

industries by making the simplifying assumption that a carbon market is equivalent to a coal price 

increase. We simulate the impact of the implementation of two climate policies: a multilateral 

carbon market in the EU with a more stringent carbon price than today and no border adjustment; 

and a multilateral carbon market that would apply to all the countries that we cover (around 75% 

of the steel produced worldwide). In these carbon markets, we set the price of GHG emissions at 

$31/tCO2
 eq. This is the estimate of the current social cost of carbon in Nordhaus (2017). We find 

that redistributive effects across countries can be as large as redistributive effects across 

technologies. The portion of world capacity that is BOF would only decrease by 0.9 percentage 

points with a stringent European carbon market. Much of this BOF capacity would be replaced by 

EAF capacity. However, the potential for a transition from BOF to EAF is much greater: we 

simulate a 13.3 percentage point reduction of the global share of BOF production if the carbon 

market was implemented everywhere. However, this would also have an impact on the location of 

plants. We find that Asian countries would reduce their overall market share by around 19% if the 

carbon market was global because Asian firms are more coal intensive and have built their steel 

industry on relatively cheaper energy. 

This paper complements a large body of economic literature that has looked at the effect of energy 

prices or environmental regulation on firm performance and location. Effects were found to be 

either positive or negative depending on the policy under scrutiny and the sector analyzed (Iraldo 

et al., 2011). Recent studies interested in industry, especially energy-intensive industry, have 
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shown that environmental regulation tends to decrease output and profits (Aldy and Pizer, 2015b; 

Ho et al., 2008; List et al., 2003; Greenstone, 2002)3 and/or reduce exports and increase imports 

(Aldy and Pizer, 2015a; Levinson and Taylor, 2008; Ederington et al., 2005). Therefore, the 

location of plants should be impacted by environmental regulation and/or energy prices (Wagner 

and Timmins, 2009; Kellenberg, 2009; Kahn and Mansur, 2013). Some recent papers have studied 

the impact of the EU-ETS on firm relocation (Dechezlepretre et al., 2014, Borghesi et al., 2016, 

Koch and Basse Mama, 2016). Both Borghesi et al. (2016) and Koch and Basse Mama (2016) find 

evidence of relocation caused by the EU-ETS particularly for these sector exposed to international 

competition. On the other hand, Dechezlepretre et al. (2014) find no evidence of carbon leakages 

triggered by the introduction of the carbon scheme.4 

Evidence that energy prices foster the adoption of cleaner technologies has been found in very 

diverse industry contexts (e.g. Cohen et al., 2017; Aghion et al., 2016; Dechezlepretre et al., 2011; 

Popp, 2006; Brunnermeier and Cohen, 2003; Popp, 2002; Gray and Shadbegian, 1998; Newell et 

al., 1999; Jaffe and Palmer, 1997; Lanjouw and Mody, 1996). Yet, none of the above-mentioned 

studies considered plant location and technological choice in the same framework.5  

Even when alternative technologies exist, the risks of relocation, found in the case of BOF 

steel manufacturing, may apply to other highly energy-intensive industries (such as the paper or 

the chemical industry) that are also strongly exposed to international competition because of the 

 
3 Earlier studies attempting to measure the effect of environmental regulation on net exports, overall trade flows, job creation or plant-location 
decisions produced estimates that were either small or statistically insignificant (Jeppesen et al., 2002; Morgenstern et al., 2002; Jaffe et al., 1995). 
4 A limitation of their study is that they focus only on the initial period of activity of the EU-ETS, up to 2009, and they do not rule out the possibility 

of finding different results in case of an increase of the policy stringency by the EU policy makers. 
5 For the steel sector, Reppelin-Hill (1999) and Schleich (2007) have looked at the impact of energy prices on firm production choices. However, 

they do not properly address the endogeneity caused by the simultaneous determination of production choices and input prices. Mathiesen and 

Maestad (2004) aims to jointly account for the locational and technological choices of manufacturers in a static numerical partial equilibrium model 
of the world steel industry. These authors however rely on expert opinion to assess the magnitude of the elasticities relevant to their modelling 

exercise, in particular the elasticity of steel production technologies to changes in energy prices. 
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high tradability of commodities.6 They may largely explain the reticence of EU countries to increase 

the stringency of the EU ETS, or to allow for exemptions in the steel sector due to the risk of carbon 

leakage. National industrial interests are one of the main reasons why multinational carbon markets 

are not being put forward. Since countries will be asymmetrically affected by it, systems with quota 

allocations that take into account the current distribution of firms across countries and their energy 

intensity may be necessary if a multilateral agreement on a carbon market is to be found. These 

findings suggest that enhancing international support for the implementation of NDCs, in 

accordance with the principle of differentiated responsibilities, is of utmost importance. 

The rest of the paper is structured as follows. Section 2 presents the data while providing a brief 

overview of the steel industry. Section 3 presents our estimation method. Section 4 comments on 

the results and the main robustness checks performed. Section 5 presents our simulation exercise 

and section 6 concludes. 

2. Data 

2.1 James King data on the steel industry 

The steel plant data has been gathered by James King and provides information on the location of 

steel plants in the world. For a few countries, the data is available since the beginning of the 20th 

century but it starts by around 1960 for most of them. The most disaggregated layer of observation 

in the database is the production unit: a steel plant is composed of several units, which may 

become operative or close down at different moments in time, even if they are on the same site. 

The data records the opening and closing year of these different units. These are permanent changes 

 
6 Some energy intensive industries produce goods that are more tradable (e.g. steel) than others (e.g. cement) because of the relative value of the 

commodity compared to transportation costs. 
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and we observe up to one opening data, and one closing date per unit.  

Units may also use different production technologies. The dataset records whether a unit is EAF or 

BOF. BOF is a steel-making technology that came into wide adoption in the 1960s.7 It produces 

steel with iron ore and coking coal.8 88% of CO2 emissions associated with plants using BOF are 

due to the combustion of coking coal to obtain coke and then the mixing of iron ore with coke to 

obtain steel. The remaining CO2 emissions indirectly come from electricity usage, usually 

generated with on-site coal-fired power generators (EPA, 2012; OECD, 2013; IEA, 2012). On the 

other hand, EAF is a recycling process that uses electricity from the grid to convert ferrous scrap 

into new steel (Giarratani et al., 2013).9, 10 Emissions are mostly due to electricity usage in the EAF 

process (EPA, 2012).  

As EAF uses recycled ferrous scrap and bypasses the coke production process, it is much less 

energy intensive. Switching from BOF to EAF is by far the option of greater impact on the 

emissions performance of steelmaking. EAF units emit, for the same amount of steel produced, 

only a quarter of the GHG emissions of their BOF counterparts (OECD, 2013 IEA, 2012). Other 

options have a much smaller emissions abatement potential.11 However, since EAF resorts to scrap, 

 
7 BOF was invented in 1948 by Swiss engineer Robert Durrer and first commercialized in 1952–1953 by the Austrian steelmaking company VOEST 

and ÖAMG. However, the process only became widespread later in the 60s. In the U.S., the larger producer of steel, U.S. Steel, adopted this process 
in 1964 (Oster, 1982). Prior to the diffusion of BOF, the mostly-used steel-making process was Open Heart Furnace (OHF). It employed as main 

inputs raw materials such as iron ore, natural gas, oil or coal. It was a slow and inefficient procedure which, from the 1960s, has been completely 

replaced by BOF, which uses the same inputs, but exhibits big improvements in efficiency: approximately 1 BOF is required to replace 6 OHFs. 
Given this phase-out, we exclude OHF from the analysis. 
8 BOF can use scrap to produce steel, but up to a maximum of 25% of the amount of total inputs. 
9 The first EAF plant was established in the US in 1907 but, initially, the quality of the steel produced was lower than the one obtained through BOF 

and not enough scrap was around to make it cheaper to produce only through recycling. At the beginning of the 20th century, it was difficult to 

control the quality of the scrap, therefore, EAF steel was considered a byproduct. Innovations in the 60s and 70s allowed EAF to produce steel of 
good enough quality at a competitive price. In the U.S., Nucor introduced mini-mills in Darlington, CA, in 1969 and was followed by other 

manufacturers in the 70s (Schweikart and Doti, 2009). 
10 Steel scrap can have different sources: “home scrap” generated within the plant (nowadays it is not sufficient any more to produce steel due to the 
requirement of very high volumes of materials, therefore it needs to be integrated with the one purchased outside the firm); “new/prompt scrap” 

which is produced within the industrial activity of other firms (it is the same as home scrap, but it is not produced within the firm); “post-consumer 

scrap” which returns in the market after it ends its useful life (it could be very quick, as for cans, but it could take up to some years, as in the case 
of cars) (Yellishetty et al., 2011). 
11 Worrell et. al. (2001) discusses in details many alternative measures to improve the energy efficiency of steel manufacturing (e.g. preventative 

maintenance, cogeneration, heat recovery, etc). With 1994 data, assuming a payback period of 3 years and analyzing 47 specific energy efficiency 
technologies and measures, they found that energy efficiency could be improved cost-effectively in most iron and steel plants by 18%. In this paper, 

we have no data on the efficiency of active EAF and BOF units and we cannot evaluate the extent to which an increase in coal prices may lead to 
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it cannot fully substitute BOF. It is more frequently used in countries where scrap is sufficiently 

available to sustain production. 

Units may substantially differ according to capacity. For example, BOF units tend to be much 

larger than EAF units. The James King data includes information on unit capacity. However, this 

information is only available for 2014. The information is missing for the units that closed down prior 

to 2014.  For all the units for which we have capacity levels in 2014, we have assumed that historical 

capacity levels are equal to the 2014 capacity level. This is not a very strong assumption since we 

look at unit-specific capacity levels, not plant-specific levels. For the units that closed down before 

2014, we have recovered unit capacity with a single imputation method.12 More precisely, we ran a 

regression on all operative units in 2014. We took the logarithm of their capacity as the dependent 

variable. The explanatory variables used in the regression were technology fixed effects (BOF vs. 

EAF), technology by country fixed effects, and technology by year of installation fixed effects. This 

regression explained 66% of the variation in capacity across production units (R-squared of 0.66). We 

produced out-of-sample capacity estimates for the units that already closed down according to their 

technology, country and installation year (see Appendix A for more detail). In our baseline econometric 

specifications, 38% of observations have an installed capacity that is imputed. For the other 62%, the data 

includes information on capacity (in 2014).  

Table 1 provides the descriptive statistics for installed capacity by technology, region and period after 

the imputation on the missing capacity data. We only display the data for the 22 countries that are 

part of the econometric analyses performed later. Other countries are not part of the analysis since 

 
changes in the efficiency of installed EAF and BOF units. Still, our results are informative on the impact of coal prices on the environmental footprint 

of steel manufacturing since EAF production is far less carbon intensive. 
12 Our preference for a single imputation method over multiple imputations is because we use IV regressions later on. This process is not compatible 

with multiple imputations. 
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we do not have sufficient information on coal prices. In Online Appendix A, we report the capacity 

information for all countries, and deduct that the 22 countries that are part of our analysis represent 

around 75% of world production. We also report information on the number of units covered by our 

analysis, with a breakdown by technology and geography, before the imputation. 

[TABLE 1 ABOUT HERE] 

For 2000-2014, we estimate that about 70% of steel manufacturing capacity is BOF in our data. While 

total production capacity has not evolved dramatically in Europe and the US, it has significantly 

increased in Asia. For 2000-2014, most production capacity is in Asia according to our data. These 

capacity figures are indicative of production levels across countries and regions but are different from 

production data. Production is likely to be more responsive to immediate increases in coal prices. 

However, installed capacity should consistently reflect long-term trends in production levels 

resulting from changes in expected coal prices. 

2.2 Coal price data 

We use industrial coal price13 data from the International Energy Agency, converted to constant 

2010 USD,14 except for China, for which we use the data from the Chinese Ministry of Coal, 

integrated with the Bohai-Rim Price Index. These sources report both coking coal and steam coal 

prices from 1978.  

Steam coal, or thermal coal, is used primarily in electricity generation, while coking coal, or 

metallurgical coal, is used in steelmaking. In BOF processes, coking coal is converted into coke by 

eliminating virtually all impurities and leaving close to pure carbon. Around 600 kg of coke is 

 
13 We collected the total price charged to the industrial sector. 
14  Coal prices are initially extracted in national currency/tonne. To convert them in constant 2010 USD/tonne, we apply the formula: 𝑃𝑐𝑜𝑛𝑠2010 =

𝑃𝑡
𝐿𝐶

𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟𝑡
𝐺𝐷𝑃

𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟2010
𝐺𝐷𝑃

𝑟2010
𝑥 , where 𝑃𝑐𝑜𝑛𝑠2010 is the price of coal expressed in constant 2010 USD/tonne, 𝑃𝑡

𝐿𝐶 is the price of coal expressed in local 

currency/tonne at time t, 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟𝑡
𝐺𝐷𝑃 is the GDP deflator for that country at time t, 𝑑𝑒𝑓𝑙𝑎𝑡𝑜𝑟2010

𝐺𝐷𝑃  is the GDP deflator of that country in 2010, 

and 𝑟2010
𝑥  is the exchange rate between the local currency and USD in 2010. Prices are inclusive of taxes.  
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used to produce a tonne of steel, which means that around 770 kg of coking coal is used to produce 

a tonne of steel (WCA, 2017). The EAF processes do not involve mixing coke with iron-ore. 

However, they are reliant on electricity generated by coal-fired power plants. With EAF, around 

150 kg of steam coal is used to produce a tonne of steel (WCA, 2017). 

Figure 1 illustrates the evolution of average coking coal prices for a few countries (the United 

States, France, India and China) for 1978-2014. Coking coal prices tended to decline in the late 80s 

because of the concomitant oil price collapse (King and Tang, 1988). After 2000, they tended to 

increase because of the commodities super-cycle, mainly due to the rising demand from emerging 

markets such as the BRIC countries (Schwartz and Creswell, 2015). Coking coal prices have been 

consistently lower in Asia compared to Europe or North America. 

[FIGURE 1 ABOUT HERE] 

Even though EAF relies on steam coal and BOF on coking coal, we only include coking coal prices 

as an independent variable in our main specifications. We expect that shifts in coking coal price 

will capture the correlation between coking coal and steam coal prices, and therefore the impact of 

a change in steam coal prices on electricity prices. In Online Appendix D.3, we use steam coal 

prices and not coking coal in alternative regressions. Results with steam coal are very similar. This 

is not surprising since these prices strongly correlate. In addition, coal prices are instrumented in 

our estimations, which corrects for measurement error. In additional specifications (in section 4.2), 

we control for other input prices, among which electricity. As soon as electricity prices are 

controlled for, the effect of coking coal prices and electricity prices are separately estimated, 

making redundant the use of steam coal prices in the model. 

2.3 Supplementary data 

Some of our robustness checks make use of price data for the other inputs used in production: iron 
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ore for BOF, electricity and scrap for EAF. 

For the electricity price we use the total price per MWh charged to the industry. The data has been 

obtained from multiple sources and merged in a unique database. Prices in national currency have 

been converted to constant 2010 USD. The sources for electricity prices are EUROSTAT statistics 

for the Eurozone countries15, the Annual Report of the Chinese National Energy Administration 

for China, the Energy Price Report of South Africa for South Africa and the International Energy 

Agency for the remaining countries. 

The data for iron ore and scrap comes from UN COMTRADE and has been calculated based on 

the import value and weight of goods in a given country.16, 17 The data availability differ from one 

country to the other but goes back to the 1960s for a few countries. Measurement errors can be 

quite large because the COMTRADE nomenclature aggregates goods of different nature and 

because the price statistics is obtained by dividing value over weight. To reduce the risk of 

measurement errors, the data has been cleared. Only the observations with annual shipments of 

over 10,000,000 tonnes were considered to ensure higher homogeneity of goods. Furthermore, we 

excluded prices below the 5th and 95th percentiles. Online Appendix B provides summary statistics 

for the evolution of the price of electricity, iron ore and scrap over time. These price series have 

been deflated using the US consumer price index.18 

3. Empirical methods 

We aim to estimate if changes in coal prices lead to changes in the structure of steel manufacturing. 

 
15 EUROSTAT reports electricity prices charged to different categories of firms according to their annual electricity consumption. There are 9 
categories before 2007, and 7 categories after 2007. Prices are averaged across all firms’ categories.  
16 The choice of using import data was driven by data limitations: we could not find domestic price data for these two. In theory, shocks on import 

prices should align with shocks on domestic prices. 
17 For iron ore, we use code 281 (“iron ore and concentrates”) of the standard international trade classification (SITC), and cross check the data with 

code 2601 of the harmonised system (“iron ores and concentrates, including roasted iron pyrites”). For scrap, we used code 282 (“iron and steel 

scrap”) of the SITC. 
18 We use the US index since prices are in dollars. We prefer the consumer price index to the producer price index since the latter excludes imports, 

and therefore does not fully reflect changes in local prices. 
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We have good reasons to think that the price of coal will have an impact on the structure of steel 

manufacturing. First, coal is an essential component of steel manufacturing.19 Second, there is 

evidence that manufacturers do not fully pass input and energy cost increases on to consumers 

through an equivalent increase in steel prices. Their margins are therefore affected and the level of 

coal prices should therefore determine investment decisions.20 

We consider that, each year, manufacturers perform investment choices to open new production 

units where profitable and close old ones whenever expected profits are too low. Expected profits 

from these investment decisions are determined by the foreseeable cost of inputs – such as coal – 

and the price of outputs over the remaining lifetime of the plants. Therefore, the expected cost of 

inputs at time t – especially coal – have an impact on investment decisions at time t and should 

mechanically correlate with the overall size of steel manufacturing in a given region for this same 

period. 

With this in mind, we develop an empirical strategy that allows estimating the impact of expected 

coking coal prices on the entry and exit of production units. Our empirical strategy is reduced-

form: we do not directly model each step in the investment decisions and solely focus on the 

correlation between expected coal prices and the presence and size of production units. The main 

advantage of this approach is that it is less data demanding and does not impose restrictions on 

production functions to explain investment decisions. The main limitation is that we cannot model 

the effect of other parameters (e.g. the cost of switching from BOF to EAF) on the dependent 

 
19 Simple calculations show that the cost of metallurgical cost corresponds to a bit less than 25% of the price of crude steel in BOF processes: 780 
kg of metallurgical coal is required to produce 1,000 kg of crude steel (Worldsteel association, 2019), and, in our data in 2014, the market price of 

coking coal is $180 per tonne and the price of steel is $587 per tonne: (780/1000) ∗ (180/587) ≈ 23.9%. 
20 Ganapati, Shapiro and Walker (2016) find incomplete pass-through of energy costs in the US industry. Furthermore, they observe lower pass-

through rates in industries with relatively low markups. Collard-Wexler and De Loecker (2015) explore markups in the U.S. steel industry and find 
that markups decreased significantly with the diffusion of EAF. The availability of two technologies to produce steel with different energy intensities 

constitute a strong limiting factor for the pass-through of energy costs in steelmaking. 
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variable, or the influence that these other parameters might have in explaining the correlation that 

we find between coal prices and steel plant location.  

Our analysis is conducted at the level of production units. Our dependent variable is the share 𝑁𝑖,𝑡 

of operational capacity corresponding to unit i and year t, over the total worldwide capacity in year 

t: e.g. in 2005, unit i is operational and represents 1% of global capacity. Three factors have an 

influence on 𝑁𝑖,𝑡. At the extensive margin, production units can either be operational or inactive. 

Inactive units correspond to those that have not entered the market yet, or that have closed down. 

Naturally, when units are inactive, 𝑁𝑖,𝑡 is equal to 0. Furthermore, at the intensive margin, when an 

investor decides to invest in unit i, they can choose to install a unit with relatively small or large 

capacity. Finally, 𝑁𝑖,𝑡 is also influenced by the total worldwide capacity in year t. This last 

phenomenon is however fully controlled for since we include time fixed effects in our econometric 

models. 

The expected price of coking coal, denoted 𝑝𝑖,𝑡
∗ , constitutes the independent variable of interest of 

our model. Therefore, we aim to estimate: 

𝑁𝑖,𝑡 = 𝑓(𝑝𝑖,𝑡
∗ ) 

Later on, we estimate this relationship for all production units altogether, and then separately 

according to the technology 𝑠 ∈ {𝐵𝑂𝐹; 𝐸𝐴𝐹}  used by the production units. This allows us to look 

at the impact of coal prices separately on BOF and EAF production units. 

To estimate such a model, we are confronted with two difficulties. The first difficulty is that we do 

not observe the expected price of coal in country c at time t, but its actual realization. We denote 

𝑝𝑖,𝑡 the price of coal relevant to unit i at time t, according to its location (in country c). However, 

the right variable of interest is the expected price of coal because manufacturing companies are 
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likely not to base their investment decision on current inputs’ prices. They will rather take in 

consideration their expected value over the lifetime of their investment. This is particularly true 

for a sector like the steel one because investments are costly and have a long lifetime. 

The second difficulty is that expected coal prices should constitute an endogenous variable. A 

change in 𝑁𝑖,𝑡 could come from a change in the demand for steel in country c at time t. This change 

in the demand for steel would affect the price of coal (𝑝𝑖,𝑡) because the steel industry is a large 

consumer of coal. Since 𝑝𝑖,𝑡 also influences 𝑁𝑖,𝑡, the two are simultaneously determined. On the 

other hand, expectations about future coal prices necessarily depend on the current price of coal. It 

follows that 𝑁𝑖,𝑡 and 𝑝𝑖,𝑡
∗  are also simultaneously determined. Simultaneous determination will most 

likely lead to attenuated results. It could even produce inverted results because higher coal prices 

could be concomitant to higher domestic demand for steel. Another potential source of endogeneity 

comes from the risk of omitted variable bias. While our specification will control for time-invariant 

unobservables like in a fixed effect model, time-varying factors, such as changes in labour costs or 

water availability, might correlate with shifts in coal prices and confound our estimates.  

The above-mentioned difficulties are likely to reinforce each other (and lead to attenuated and/or 

misleading estimates) if not carefully handled. Lack of information on expected prices creates 

measurement error, which exacerbates the endogeneity of expected coal prices. We handle these 

difficulties as follows. 

3.1. Computing expected coal prices 

To proxy expected coal prices, we consider that a perfectly rational agent forecasts future prices 

based on the information that s/he has. We assume that past prices constitute all the information 

easily available to economic agents, such that their expectations about future prices are a function 
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of past prices. In this framework, expectations can be recovered with a time-series model that 

produces a forecast of the coal price at time t+1, t+2, t+3, etc. with the coal price at time t, t-1, t-2, 

etc. We recursively apply autoregressive integrated moving-average models (ARIMA) on national 

annual time-series of real coal prices. The ARIMA model that we use to make the predictions is a 

first-order autoregressive model. This is because this model proved to be a good fit to the data.21 

This is a mean-reversing model: agents assume that price spikes or lows are unusual and expect 

that prices will align with longer-term trends. We use the following specification: 

𝑝𝑖,𝑡 = 𝜇𝑖 + 𝛾𝑖𝑝𝑖,𝑡−1 + 𝜀𝑖,𝑡 

In this model, the price of coal in each country i is regressed on its first lag. 𝜀𝑖,𝑡 is a term of error 

and 𝜇𝑖 and 𝛾𝑖 are parameters to be estimated. For each period t and country i, the ARIMA model 

is estimated with data from the previous 10 years. When we lack information on the previous 10 

years, we estimate the model with all available years, provided that we have data for the previous 

4 years at least. In each case, we then take the 10-year average of forecasted prices (for time t+1, 

t+2, t+3, etc.) as our value for the expected coal price, 𝑝𝑖,𝑡
∗ . The ARIMA model is re-estimated for 

each time period t present in the sample, except for the first four years of our data (1978-1981), for 

which we did not have enough data to run the ARIMA model. We make out-of-sample predictions 

and, year after year, we allow steel companies to update their beliefs about future prices as soon 

as new information is available. Detailed statistics on the output of the ARIMA model and the 

predictions obtained are reported in Online Appendix C.  

We performed several robustness checks relative to the choice of the coal price variable. They are 

 
21 In preliminary tests, we tried to use an AR2 process with the coal price data to derive expectations. However, the coefficient for the second lag in 

the ARIMA regressions was rarely statistically significant. There was therefore little justification for preferring an AR2 process. Nonetheless, in a 
complementary robustness check, we used an AR2 process instead of an AR1 process to derive coal price expectations and run our baseline models. 

Results were very similar. We chose not to report them for the sake of concision.  



15 
 
 
 

reported in Online Appendix D and also briefly discussed in the results section. 

3.2. Endogeneity of expected coal prices 

Our econometric strategy needs to deal with the endogeneity of the expected price of coal. In the 

literature, the most frequently suggested technique consists of using cost shifters as instruments, 

i.e. factors that are correlated with the cost of producing coal, and not with the demand for coal 

(e.g. Berry, 1994). However, the context of coal and steel production makes it hard to find strictly 

exogenous instruments: the two sectors are closely related. For example, steel production uses 

another output of the mining industry as an input, namely iron ore. Therefore, supply shocks on the 

extraction of coal may also affect the extraction of iron. If such cost shifters cannot be used as 

instruments, an alternative would consist in using shocks on the demand for coal that are not 

correlated with the demand from the steel industry as instruments. This approach is the one of 

Hausman et al. (1994), who instruments the price of a product in a given market with the price of 

this same product on other markets. Provided that demand shocks are not correlated across markets, 

this instrumentation strategy is valid. Yet, the steel industry is one of the main consumers of coal 

and markets are integrated across regions. When not used to make steel, coal is used to produce 

electricity. The assumption that demand shocks on the electricity market are not correlated with 

demand shocks on the steel market is not convincing: the two sectors are unlikely to be fully 

independent, with steel manufacturing using electricity, but above all largely dependent on 

economic growth in other sectors which consume electricity themselves, especially construction. 

We consider that most of the (demand and supply) shocks on coal prices are likely to be correlated 

with contemporaneous shocks on the steel industry. When contemporaneous correlations are 

strong, the usual approach consists in exploiting past information that is not correlated with 

contemporaneous shocks to produce valid instruments. Namely, it is possible to use the lags of the 
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endogenous variables as instruments, i.g. instrumenting 𝑝𝑖,𝑡
∗  with 𝑝𝑖,𝑡−𝑥

∗  with x being an integer 

equal to 1 or above.  

This choice, justified by the absence of better instruments, is not fully satisfactory at the outset 

because we cannot fully exclude that shocks in the deeper lags for expected coal prices may not 

correlate with the error term. Hereafter, we strongly reduce this risk by estimating dynamic models, 

i.e. expressing 𝑁𝑖,𝑡 as a function of 𝑁𝑖,𝑡−1 and 𝑝𝑖,𝑡
∗ . This significantly reduces the risk that the 

exclusion restriction is not met, since any correlation between 𝑁𝑖,𝑡 and 𝑝𝑖,𝑡−𝑥
∗  should either go 

through 𝑁𝑖,𝑡−1 or 𝑝𝑖,𝑡
∗ . In complement, we naturally run standard over-identification tests to 

corroborate the fit of deeper lags for instrumentation. We also check that the inclusion of additional 

covariates has little influence on the estimated coefficient for the endogenous variable. 

3.3. Available estimation methods 

Traditional fixed effect models do not allow using pre-determined variables as instruments (e.g 

𝑝𝑖,𝑡−𝑥
∗  for 𝑝𝑖,𝑡

∗ ) because these rely on the assumption of strict exogeneity of the instruments.22 

Furthermore, they do not allow including 𝑁𝑖,𝑡−1  as an independent variable in the model.23 To 

circumvent these issues, researchers used to rely on models in first differences (Roodman, 2008). 

However, these models lack efficiency and, when time-persistent processes are studied, lags 

constitute weak instruments and the estimation is biased towards OLS results.24 

There are two strategies to avoid weak instrumentation when instrumenting endogenous variables 

 
22 When predetermined-variables are used as instruments in a fixed effect model, they do not solve the endogeneity issue and results tend to be very 
similar to the results obtained without instrumentation. 
23 In Online Appendix E.2, we report the results that can be obtained with a fixed effect model. There is no treatment of endogeneity and we do not 

include 𝑁𝑖,𝑡−1  in the model. As expected, results are inconsistent. They point to a positive correlation between coal prices and steel manufacturing. 

This positive correlation is not so surprising if we consider that coal price increases are likely to be concomitant to surges in the demand for steel 
(or economic growth in related sectors). 
24 In Online Appendix E.3, we provide an example of this. We use a model in first differences and instrument the log of the differenced expected 

coal prices, ln(𝑝𝑖,𝑡
∗ ) − ln(𝑝𝑖,𝑡−1

∗ ), with their third lag, ln(𝑝𝑖,𝑡−3
∗ ) − ln(𝑝𝑖,𝑡−4

∗ ). We show that instrumentation is weak and leads to inconsistent results. 

We also provide the (inconsistent) results of a model in first differences in which we assume that ln(𝑝𝑖,𝑡
∗ ) − ln(𝑝𝑖,𝑡−1

∗ ) is exogenous. 
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with pre-determined regressors under time persistence. The first strategy consists in using pre-

sample mean estimators, as in Blundell, Griffith and Windmeijer (2002). A specific interval of time 

{𝑡1; 𝑡𝑓} is set to be the time of the analysis. In this interval, the set of information about dependent 

and independent variables is complete. There is, additionally, a pre-sample interval {𝑡𝑖; 𝑡0} where 

only information on the dependent variable is available. A mean of the dependent variable is 

estimated over {𝑡𝑖; 𝑡0} and included as a control variable in the estimation. Blundell, Griffith and 

Windmeijer (2002) show that pre-sample mean estimators are more efficient and significantly less 

biased than first difference estimators, even when time persistence is not extreme and for a small 

number of pre-sample observations. The intuition why pre-sample mean estimators are superior to 

first difference estimators is quite simple: they incorporate additional information into the model, 

namely the pre-sample mean of the dependent variable. The main limitation explaining why these 

estimates are barely used is that they can only be applied if pre-sample information on the 

dependent variable is available to the econometrician.25 

We estimate the following log specification: 

                                  𝑁𝑖,𝑡 = 𝛼 + 𝛽𝑁𝑖,𝑡−1 + 𝛾 ln(𝑝𝑖,𝑡
∗ ) + 𝜎�̅�𝑖,𝑡𝑖

+ 𝜃𝑡 + 𝑒𝑖,𝑡                                   (1) 

Where �̅�𝑖,𝑡𝑖
 is the pre-sample mean of 𝑁𝑖,𝑡, 𝜃𝑡 is a year fixed effect and 𝑒𝑖,𝑡 is the error term. 𝛼, 𝛽, 

𝛾 and 𝜎 are parameters to be estimated. Therefore, the pre-sample mean estimator is, in spirit, 

equivalent to a dynamic panel data model, in which we proxy the fixed effect with the pre-sample 

mean. As such, the model can globally be interpreted as a dynamic fixed effect model with year 

fixed effects. The long-term impact of the log. expected coal prices on 𝑁𝑖,𝑡 is given by 𝛾/(1 − 𝛽). 

We have data on 𝑁𝑖,𝑡 since the 1960s, which is ideal considering that BOF and EAF processes 

 
25 This also requires stationarity. We test for stationarity using several unit root tests. Results are provided in Appendix G. These tests indicate that 

the dependent variable and coal prices seem stationary. 
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started to be widely used to produce steel from 1960 onwards. Since our data on 𝑝𝑖,𝑡
∗  starts in 1982, 

we have 22 years of pre-sample information on 𝑁𝑖,𝑡 which can be used to run pre-sample mean 

estimators in the fashion of Blundell, Griffith and Windmeijer (2002). However, we use the period 

from 1970 to 1981 to calculate the pre-sample mean, and not the full period (1960-1981). The 

reason is simple. Our data is on unit openings and closings since 1960. Therefore, the 1960 data 

does not correspond to the stock of units that were active in 1960, but only to the flow that opened 

this year. After 10 years of data, i.e. in 1970, we can compute a value of 𝑁𝑖,𝑡 that account for the 

relative importance of unit i compared to all the units that became active over the past 10 years and 

are still active in 1970. The pre-sample mean between 1970 and 1981 is therefore more 

representative of the share of capacity of unit i over total capacity in the pre-sample period.26  

Equation (1) can be estimated using two-stage least squares (2SLS). To instrument for ln(𝑝𝑖,𝑡
∗ ), the 

lags of ln(𝑝𝑖,𝑡
∗ ) are valid instruments provided that contemporaneous shocks on 𝑝𝑖,𝑡

∗  are not 

correlated with previous shocks. The latter means that shifts in expectation between time t and t-x 

arise from the inclusion of new information about 𝑝𝑖,𝑡
∗ . This is the case if expectations are rationally 

formed, or if they follow a random walk. In our base specification, we use ln(𝑝𝑖,𝑡−5
∗ ) to instrument 

for ln(𝑝𝑖,𝑡
∗ ). Our instrumentation strategy assumes that past shocks on expected coal prices do not 

correlate with the error term (𝑒𝑖,𝑡), but still determine the value of expected coal prices at time t. In 

mathematical terms, our instrument is valid if 𝑐𝑜𝑟𝑟(ln(𝑝𝑖,𝑡−5
∗ ) , 𝑒𝑖,𝑡) = 0. The pre-sample mean 

estimator tolerates that 𝑣𝑖,𝑡 is correlated with 𝑒𝑖,𝑡−𝑥 with 𝑥 ≥ 1, whereas a fixed effect model would 

require 𝑐𝑜𝑟𝑟(ln(𝑝𝑖,𝑡−5
∗ ) , 𝑒𝑖,𝑡−𝑧) = 0 with 𝑧 ≥ 0. In theory, we could use any lag, e.g. ln(𝑝𝑖,𝑡−1

∗ ), to 

 
26 In Online Appendix E.1, we modify the pre-sample period used for estimation to 1960-1981 instead of 1970-1981. Results are similar to our 

preferred specifications. 
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instrument for 𝑝𝑖,𝑡
∗ . In practice, using a deeper lag such as 𝑝𝑖,𝑡−5

∗  reduces the risk that 

𝑐𝑜𝑟𝑟(𝑝𝑖,𝑡−5
∗ , 𝑒𝑖,𝑡) ≠ 0, which would violate the exclusion restriction. 

In an alternative specification, we expand the number of lags used as instruments, and run the 

model with ln(𝑝𝑖,𝑡−3
∗ ), ln(𝑝𝑖,𝑡−4

∗ ) and ln(𝑝𝑖,𝑡−5
∗ ) as instruments. This allows us to run an over-

identification test and make sure that all lags provide the same results when used as instruments. 

The general idea of this process is that all lags are valid instruments in theory and should therefore 

convey similar results. If the 3rd lag were not an exogenous instrument but the 5th lag were, then 

both could be providing different estimates. The result of this test, presented in section 4, 

corroborates our assumption that there is no correlation between 𝑝𝑖,𝑡−5
∗  and 𝑒𝑖,𝑡 violating the 

exclusion restriction.  

In another alternative specification, we instrument our model with the first differences of the lags 

of expected coal prices – i.e. 𝛥𝑙𝑛(𝑝𝑖,𝑡−𝑥
∗ ) with 𝛥𝑙𝑛(𝑝𝑖,𝑡−𝑥

∗ ) = 𝑙𝑛(𝑝𝑖,𝑡−𝑥
∗ ) − 𝑙𝑛(𝑝𝑖,𝑡−1−𝑥

∗ ) and 𝑥 ∈

{2; 3; 4}.27 This strategy of using first differences is often employed to reduce the risk that the 

exclusion restriction is violated when using lags as instruments. The results obtained with this 

choice of instruments match those obtained when using lags in levels, corroborating the validity of 

our instrumentation strategy. 

The other econometric model to avoid weak instrumentation with pre-determined regressors under 

time persistence is the system generalized method-of-moments (GMM) estimator (Arellano and 

Bover, 1995; and Blundell and Bond, 1998). This estimator complements an equation in first 

differences with an equation in levels. This strongly increases precision compared to a standard 

first difference estimator and allows using lags in levels as instruments, which considerably reduces 

 
27 With x equal to 2, 3 and 4, we use up to the 5th lag to compute the instruments. This allows us to have similar estimation samples across all 

specifications. 
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the risk of weak instrumentation. Compared to the pre-sample mean estimator, the main advantage 

of system GMM is that is does not assume that the pre-sample mean is a good representation of the 

fixed effect. However, system GMM relies on the non-trivial assumption that first differences of 

instrument variables are uncorrelated with the fixed effects.  

Hereafter, we provide the results obtained with system GMM alongside the ones obtained with the 

pre-sample mean estimator. This ensures that our results are not dependent on using one estimator 

instead of the other. 

4. Results 

Table 2 presents the results of the estimation of equation 1. Column 1 reports results of the impact 

of coal prices on installed capacity for the two technologies jointly. We find that an increase in 

expected coking coal prices leads to a reduction in installed capacity. Column 2 displays our results 

for BOF capacity and column 3 for EAF capacity separately.28 They show that the impact of coking 

coal on operational capacity exclusively comes from BOF units. The long-term multiplier of the 

effect in column 2 implies that a 1% increase in the expected price of coal in country i would cause 

a decrease in available BOF capacity by about 0.37% (95% CI is 0.01-0.73%).29 No effect is found 

for EAF units.  

[TABLE 2 ABOUT HERE] 

The results displayed in Table 2 rely on the validity of our instrumentation strategy. In Table 3, 

columns 1 (for BOF) and 3 (for EAF), we jointly use the third to fifth lags of 𝑝𝑖,𝑡
∗  as instruments 

 
28 The number of countries slightly vary in the samples used for estimation. The Netherlands leave the sample for EAF because there is no opening 

or closing of EAF units in this country in our sample. When 5 lags are used as instruments (Table 3), the number of countries in the pooled sample 
reduces from 22 to 19 (Russia, Spain and Switzerland leave the sample) since we do not have enough information on coal prices to compute all the 

lags. Later on, we use closer lags, or assume that the coal prices are exogenous (e.g. in the Appendices), and these countries come back in the sample. 
29 In absolute terms, a 1 percent increase in expected coal prices lead to an estimated reduction in the dependent variable that is equal to 0.0002389 
percentage points. The sample average for the dependent variable is 0.0006472 for the estimation sample of Table 2, column 2. The reduction is of 

0.37% (0.0002389 / 100 / 0.0006472). 
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and run over-identification tests. Results are very close to the ones obtained in Table 2 and the 

three over-identification tests of columns 1–3 corroborate the validity of our instrumentation 

strategy. In addition, we use the first difference of the lags of expected coal prices in columns 2 

(for BOF) and 4 (for EAF) as instruments, instead of the lags in levels. In these specifications, we 

use the limited information maximum likelihood estimator to reduce the risk of weak identification. 

Results for Table 3, columns 2 and 4, are also very similar to our baseline results, suggesting that 

the exclusion restriction holds. 

[TABLE 3 ABOUT HERE] 

Besides, the results of Table 2 are only valid if the pre-sample mean is a good representation of 

the fixed effects. In Appendix E.1, we change the period used to compute the pre-sample mean 

and find similar results. We also split the sample period into two in Appendix E.4 to check that 

results are relatively stable across time. In Table 4, we also estimate a dynamic panel data model 

using system GMM. Results with system GMM are close to those of Tables 2 and 3, implying 

that our results do not rely on the choice of a pre-sample mean estimator. A difference, though, 

is that the impact of coal prices on BOF plants appears to be sharper.  

[TABLE 4 ABOUT HERE] 

Furthermore, the results of Tables 2–4 are robust to several specification changes. We check that 

these results do not rely on a specific functional form between coal prices and our dependent 

variable (see Online Appendices D.1). Results are not altered when we directly use expected coal 

prices instead of their logarithm in the model. When we add a quadratic term, results suggest that 

the marginal impact of an increase in coal prices is higher when coal prices are low, which is 

consistent with a logarithmic form. Also, our general results do not rely on the way expectations 

were computed. We obtain similar results, even though less precisely estimated, when we use 
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contemporaneous prices (𝑝𝑖,𝑡) instead of expected prices (𝑝𝑖,𝑡
∗ ) as the main independent variable 

(see Online Appendix D.2). This implies that our results hold if we assume that manufacturers 

are myopic or think that coal prices follow a random walk.30 

Finally, in Table 5, we assess if the impacts of Tables 2–4 come from changes at the extensive 

margin (i.e. the entry and exit of units). To do so, we reproduce the econometric estimation, but 

assume that any operational unit has a capacity normalized to 1. The new share 𝑁𝑖,𝑡 is therefore 

equal to 0 for inactive units, or 1 for active units, divided by the number of operational units at time 

t. Results are provided with the pre-sample mean estimator (columns 1 and 2) and system GMM 

(columns 3 and 4), for BOF and EAF separately. Results in column 1 are statistically insignificant, 

while the other results point to a reduction in the number of all operative units, BOF and EAF, 

when coal prices increase. The difference found for BOF and EAF in Tables 2–4 therefore seem to 

come from changes at the intensive margin (i.e. changes in the capacity of operative units), and not 

from changes at the extensive margin (i.e. the number of units).31 

[TABLE 5 ABOUT HERE] 

4.2 Interpretation 

We have found an impact of expected coking coal prices on BOF installations and no impact (pre-

sample mean estimator) on EAF installations. These global estimates could in fact hide a large list 

of effects, both direct and indirect, of coal prices on installed capacity. 

In the case of BOF units, the price of coking coal should influence installed capacity because BOF 

units directly use coking coal as an input. The model may also capture three additional effects. 

 
30 We also checked that excluding Chile and Australia, which are not in the same geographical areas as the other countries, had no influence on our 
general results. We do not report this robustness check for the sake of concision.  
31 As described before, installed capacity at unit level has been imputed based on the information available for 2014. Therefore, the imputation 

method creates measurement error in the dependent variable and may reduce efficiency. It has however no impact on model consistency under two 
assumptions: 1) unit capacities did not significantly differ between the units that closed down and the units that are still operative, conditional on 

technology, country and installation year; and 2) unit capacity did not go through substantial adjustments prior to 2014.  
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First, an increase in the price of coal may modify the relative competitiveness of BOF units 

compared to EAF units. Therefore, when coal prices increase, BOF units may be replaced by EAF 

units. Another effect comes from a change in the price of electricity due to a change in the price of 

coal. This effect is likely to be small but may increase production costs for BOF units. Finally, an 

increase in the price of coal could be correlated with the price of iron ore, since iron extraction is 

also reliant on energy.  

In the case of EAF, our model could be capturing no effect at all, or a combination of effects 

cancelling out each other. There is no direct impact of coking coal prices on production costs since 

EAF units do not use coking coal. However, indirect effects could be occurring. On one side, EAF 

production could be increasing when coal prices are high because this technology becomes more 

competitive. On the other, several effects could reduce competitiveness gains, cancelling off any 

positive effect. For example, EAF uses electricity and, up to a certain extent, we could be capturing 

the effect that an increase in (steam) coal prices has on electricity prices. Above all, an important 

phenomenon is the interdependency between EAF and BOF production. EAF uses scrap as a main 

input to produce steel. In practice, the value of scrap should be correlated with the price of steel 

and therefore the price of BOF inputs. Besides, home market effects might also be important 

determinants. Both EAF and BOF technologies rely on a large downstream demand for raw steel. 

The downstream demand is likely to locate where steel manufacturing is to reduce transportation 

costs. Likewise, steel manufacturers have an interest to be geographically close to their clients. A 

downsizing of the BOF industry, which represents the largest share of the market, could 

significantly affect the smaller share of the market serviced by the EAF industry. 

In Table 6, we aim to separately control for a series of effects that might explain the correlation 

between coal prices and BOF and EAF capacity levels. We add three additional control variables 
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for the other inputs likely to determine the level of installed BOF and EAF capacity: the expected 

price of iron ore (used in BOF), electricity (mostly used in EAF) and scrap (mostly used in EAF).  

[TABLE 6 ABOUT HERE] 

Table 6, column 1, confirms that expected coking coal prices is the main input determining the 

total capacity present in a given country. Column 2 shows that this effect is mostly driven by BOF 

production, suggesting that all indirect effects may be rather small. Interestingly, when controlling 

for other inputs, we find evidence of a small negative effect of coking coal prices on EAF. This 

may stem from home market effects and the interdependency between BOF and EAF since EAF is 

a recycling technology. The reader may also note that the stability of the results between Table 2 

and Table 6 implies that our baseline specification is robust to the inclusion of additional covariates, 

a feature that corroborates the validity of our instrumentation strategy.  

5. Simulation of multilateral carbon markets 

We now run a simulation where we quantify the effect of the introduction of multinational carbon 

markets on the location of steel plants and the share of EAF units in a given country. Naturally, 

this policy choice is illustrative since countries may opt for different types of policies to create a 

carbon price. Cap and trade schemes and carbon taxes can be designed in very diverse ways. We 

assume that if country i adopts the carbon market, it raises the price of carbon by an additional $ 

31 per tonne of CO2 equivalent. This figure corresponds to the current social cost of carbon as 

estimated in Nordhaus (2017). For simplicity, we assume that this increase in the price of carbon 

would be additional to any existing policies, and that it would exclusively translate into an increase 

in the price of coal. We convert the carbon tax of $ 31/tCO2 eq. into a coal price increase by 
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assuming that a tonne of coal emits 2.457/tCO2 eq.32 We therefore raise the expected price of coal 

in regulated countries by about $ 76 per tonne.  

We produce three scenarios with different combinations of countries implementing the scheme. In 

the business as usual (BAU) scenario, the policy is implemented nowhere. In the second scenario, 

the carbon market is adopted by the Member States of the European Union and Associated 

Countries (Norway and Switzerland in the simulation), with no border adjustment of steel prices 

with third countries. This scenario corresponds to the one where the steel industry would be strictly 

regulated under the EU Emissions Trading Scheme (ETS), with a much higher carbon price than 

the one we can be observe today. The last scenario assumes that all countries would implement the 

carbon market. 

To assess policy impacts, we run a microsimulation based on the specifications displayed in 

columns 2 and 3 of Table 2: we therefore consider that the impact of increasing coking coal prices 

would be different for BOF and EAF units. We choose Table 2 since we know that the results of 

Table 2 are globally robust throughout Tables 3–5 and the appendices. Based on Table 2, we 

compute the share of BOF and EAF units that would have operated in country i over the sample 

period under the two policy scenarios, and compare this share to the one recorded in our data (which 

corresponds to the business-as-usual scenario). 

Importantly, this microsimulation relies on equations that have been estimated in partial 

equilibrium. This type of analyses cannot account for general equilibrium adjustments. This is a 

strong limitation for two reasons. First, an increase in the price of coal by $ 76 per tonne would be 

clearly non-marginal: it corresponds to a 90% price increase (the average price of coking coal is $ 

 
32 https://www.carbontrust.com/home/. Consulted June 2017. 

https://www.carbontrust.com/home/
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84 in our sample).  

Second, if all companies were subject to the same coal price increase around the world, investment 

decisions would be less sensitive to the price increase than if it were affecting only a small subset 

of countries. This is because if only a few companies face high coal prices, then they are at 

competitive disadvantage. However, if all companies faced the same increase in coal prices, then 

soaring coal prices would not create competitive imbalances across countries. In the case of a global 

carbon price or market, we would however suspect that three effects would still be at play and 

affect production capacity: 1) steel would be more expensive, so consumers would buy less steel; 

2) other alternatives may become comparatively cheaper; 3) EAF steel would still gain 

competitiveness since it is less carbon-intensive. These three effects are likely to affect local 

production strongly because much of the steel consumed today is produced domestically. 

According to Deloitte (2018), the top 20 exporting countries of steel have exported 411 million 

tonnes in 2017, which only amounts to 24% of global output.  

Overall, the fact that we rely on equations estimated in partial equilibrium implies that our results 

are likely to over-estimate total effects. The reader should therefore be careful. The output of our 

estimations are more informative about the direction of the change than they are about the exact 

market shares of steel manufacturing by location and technology under a high coal price regime. 

On the other hand, in terms of technological change, our simulation only considers the switch from 

BOF to EAF. We would expect that carbon taxes lead to innovations within BOF and EAF 

technologies. The full technological response is therefore larger than the one that we can observe 

in this simulation. 

With these limitations in mind, results are reported in Table 7. We are, above all, interested in shifts 

in the market share of BOF vs. EAF, since they would be very likely to happen even if all countries 
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would implement a carbon price. We are also interested in the likely location of plants in either 

North America, Europe or Asia. BOF represents 71.6% of installed capacity in the BAU. This 

would slightly decrease by 0.9 percentage points with a higher carbon market in Europe. However, 

if the carbon market is implemented everywhere, the reduction in the share of BOF capacity is 

strong, representing 13.3 percentage points (i.e. 18.6% in relative terms). While this value is large, 

it has been calculated for an even larger increase in coal prices (by 90%). 

 [TABLE 7 ABOUT HERE] 

Estimated redistributive effects across countries are large as well. The share of BOF capacity in 

European countries would drop by 10.0% (from 16.0 to 14.4 percentage point) if they were the 

only ones to implement this carbon market. This could, however, be partly compensated by an 

increase in EAF production in Europe (increasing from 8.0 to 8.7 percentage points, i.e. by 8.3%).  

If the policy was implemented everywhere, we find that Asian countries would reduce their market 

share for both BOF and EAF production by 19.4% (minus 10.5 percentage points). The decrease 

would be due to a 35.6% reduction in BOF capacity, partially compensated by the increase in 

market share from EAF processes. This increase in Asian EAF capacity would be large in relative 

terms (60%), but much smaller in absolute terms (5.5 percentage points). The main reason why 

Asian countries would lose market share is because Asian firms are more coal intensive and they 

have built their steel industry on relatively cheaper energy. 

We perform several robustness checks to assess the sensitiveness of these results. In Online 

Appendix F.1, we run the simulation with alternative carbon prices of $ 10 and $ 50, instead of $ 

31. The magnitude of effects varies in proportion, but not our conclusions. In Online Appendix 

F.2, we run the simulation with a specification that uses the first differences of the lags of expected 

coal prices as instruments (Table 3, columns 2 and 4). We find similar results. We also run the 
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simulation with the GMM estimator (Table 5) in Online Appendix F.2. Results are very similar, 

but the drop in the production in Asia is more severe with this specification. In another robustness 

check, we use the expected price of coal in levels as the independent variable instead of its 

logarithm. We find simulation results that are similar to Table 7.  

Finally, in the above simulation, we considered that marginal effects were homogeneous across 

regions. This assumption is relaxed in Online Appendix F.3, where we estimate region-specific 

response functions. With region-specific responses, we globally find the same trends as per Table 

7 with the pre-sample mean estimator. We also find similar trends with a GMM estimator and 

region-specific effects. In particular, the very strong effect we found on Asian firms with the GMM 

estimator in Online Appendix F.2 is no longer present when we account for region-specific 

marginal effects. 

Overall, this simulation is informative about the upcoming difficulties in reaching agreements on 

carbon markets across the globe. The steel industry would be sensitive to the implementation of a 

carbon market as a whole, since we predict a significant decrease in installed BOF capacity if the 

carbon price equaled the social cost of carbon of Nordhaus (2017). However, a higher carbon price 

would not affect countries equally. Our figures suggest that some European firms would relocate 

if the European steel industry was to comply with a more stringent carbon price with no border 

adjustments, e.g. in the framework of the EU ETS. Asian countries have benefited, so far, from a 

competitive advantage in cheap energy, which allows them to rely on polluting technologies to 

produce steel. They would lose part of this advantage if emissions were uniformly priced 

worldwide as they specialized more in BOF technologies. Finally, cross-country relocation effects 

appear to be at least as strong as within-country changes in steel-making technologies. 
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6. Conclusion 

The Paris Agreement, in 2015, has shown the ambition of countries to undertake a global action 

against climate change. The steel sector is particularly sensitive to this topic as it is a major emitter 

of GHG emissions in the atmosphere. Given the availability of two substitutable steel-making 

technologies, the interest lies in the possibility, through environmental policies, to shift steel 

production from BOF to EAF, making it less carbon intensive.  

This study aims at shedding light on the impact of an increase in coal prices on the location of 

steel plants and the technologies that the firms would choose to produce steel. In our baseline 

specification, we find that, on average, an increase of 1% in the expected price of coal reduces the 

share of BOF capacity by 0.37%, but has no impact on EAF capacity. When we simulate the effect 

of regional increases in coal prices, we find that European firms would lose competitiveness if they 

were to unilaterally set a binding carbon price on their firms, but this effect could be partially 

compensated by a shift from BOF to EAF production. Therefore, the risk of either relocation or 

asset stranding is real for EU firms if steel making processes were more heavily taxed. Another 

important finding is that a uniform increase of coal prices across the globe would also have an 

impact on the location of steel plants. Asian firms would be more severely affected because they 

are the ones that rely on BOF technologies the most.  

The simulation on the European market shows that unilateral agreements may prove detrimental 

to national industries in industrialized countries, making the search for a multilateral agreement 

all the more necessary. In this regard, many Parties to the Paris Agreement have raised the concern 

that international support is currently insufficient and enhancing it will be necessary to increase the 

ambition of Nationally Determined Contributions (UNFCCC, 2016). A multilateral agreement 

could also have strong redistributive consequences for the steel sector. Our results suggest a 
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multilateral agreement on taxing energy use in the steel sector will be much easier to reach if 

measures were taken to guarantee that reducing GHG emissions in the industry would not 

strongly modify the location of production worldwide. Whereas these results mostly apply to 

the steel sector, they are likely to be valid for other energy-intensive sectors open to international 

competition, such as the paper industry. These redistributive effects would come on top of the 

reduction in demand that would stem from the increase in the prices of goods that require much 

energy to be produced. 

Having said so, the reader should be careful that the general figures provided in the simulation 

are only indicative, since we are making extrapolations of effects for a non-marginal increase in 

coal prices, and do not account for macroeconomic adjustments and interactions at world level 

resulting from such an increase. As such, these results are however revelator of the sensitiveness 

of the steel industry to the implementation of ambitious climate policies. 
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Tables 

Table 1: Descriptive statistics of James King data on steel capacity (in million tonnes) by 

location and main technology (1980-2014) 

Period 1980-1989 1990-1999 2000-2014 

Technology BOF EAF BOF EAF BOF EAF 

North America  85.7 51.3 81.1 70.8 70.2 88.0 
Europe  219.4 58.5 218.2 84.1 186.7 122.6 

Asia  260.2 22.9 306.4 58.0 594.9 113.7 
Other  12.4 0.8 12.4 1.7 9.8 2.1 
Total 577.7 133.4 618.1 214.6 861.5 326.5 

Notes: The table reports the average installed capacity of steel-making production in the 22 countries covered in our 

statistical analysis. North America includes Canada and the United States. Europe includes Belgium, Czech Republic, 

Finland, France, Germany, Italy, The Netherlands, Norway, Poland, Portugal, Russia, Spain, Sweden and Switzerland. 

Asia includes China, India, Japan and Turkey. Other includes Australia and Chile. The information in this table is 

based on imputed capacity levels. 
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Table 2: Pre-sample mean estimation of the impact of expected coal prices on the share of 

installed capacity located in a given country 

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  -0.00862*** -0.0105** 0.000968 

coal price (0.00197) (0.00468) (0.00193) 

Lag dependent 0.961*** 0.956*** 0.963*** 

variable (0.00318) (0.00513) (0.00179) 

Pre-sample mean  -0.00200 -0.00327 -0.0186*** 

(1970-1981) (0.00170) (0.00309) (0.00334) 

Year fixed effects Yes Yes Yes 

Long-term multiplier for the -0.2207*** -0.2389** 0.0258 

effect of coal prices (0.0527) (0.1190) (0.0508) 

Weak identification test:    

Kleibergen-Paap rk Wald F  1180 1069 1373 

Maximum IV size bias <10% <10% <10% 

Observations 41,394 14,506 26,888 

Countries 19 19 18 

Notes:  The model is estimated with 2SLS. The logarithm of the expected price of coking coal is instrumented with its 

5th lag. Cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively 

denote significance at 10%, 5% and 1% levels. 
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Table 3: Specifications using alternative instrumentation strategies 

Dependent variable Share of installed capacity worldwide (x 1,000) 

Technology BOF EAF 

Instruments In levels (a) In differences (b) In levels (a) In differences (b) 

Column number (1) (2) (3) (4) 

Log. expected coking  -0.0101** -0.0112* 0.00105 0.00123 

coal price (0.00458) (0.00604) (0.00197) (0.00229) 

Lag dependent 0.956*** 0.957*** 0.963*** 0.962*** 

variable (0.00515) (0.00506) (0.00178) (0.00189) 

Pre-sample mean  -0.00336 -0.00296 -0.0187*** -0.0188*** 

(1970-1981) (0.00307) (0.00380) (0.00334) (0.00335) 

Year fixed effects Yes Yes Yes Yes 

Long-term multiplier for the -0.2297** -0.2562* 0.0279 0.0327 

effect of coal prices (0.1169) (0.1460) (0.0519) (0.0599) 

Weak identification test:     

Kleibergen-Paap rk Wald F  1876 24 1082 5 

Maximum IV size bias <10% <10% <10% 10-15% 

p-value of Hansen J Statistic 0.13 0.14 0.20 0.18 

Observations 14,504 14,504 26,884 26,880 

Countries 19 19 18 18 

Notes: In all columns, cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** 

respectively denote significance at 10%, 5% and 1% levels. 

(a) The models in columns 1 and 3 are estimated with 2SLS. The logarithm of the expected price of coking coal is 

instrumented with its 3rd to 5th lags.  

(b) The models in columns 2 and 4 are estimated using the limited-information maximum likelihood estimator. The 

logarithm of the expected price of coking coal is instrumented with the first difference of the 2nd, 3rd and 4th lags, i.e. 

Δln(𝑝𝑖,𝑡−𝑥
∗ ) with Δln(𝑝𝑖,𝑡−𝑥

∗ ) = ln(𝑝𝑖,𝑡−𝑥
∗ ) − ln(𝑝𝑖,𝑡−1−𝑥

∗ ) and 𝑥 ∈ {2; 3; 4}. We choose the first differences of the 2nd 

to 4th lag so that the deepest lag we use to calculate the instruments corresponds to the 5th lag. Please note that only the 

instruments are in first difference, while the equations are in levels. 
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Table 4: Dynamic panel data estimation 

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  -0.00927*** -0.0140*** -0.000304 

coal price (0.00167) (0.00349) (0.000950) 

Lag dependent 0.969*** 0.966*** 0.968*** 

variable (0.00812) (0.00720) (0.00234) 

Unit fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

Long-term multiplier for the -0.2966** -0.4152** -0.0097 

effect of coal prices (0.1262) (0.1853) (0.0300) 

Arrellano-Bond test for AR(2) 0.52 0.77 0.20 

    

P-value of Hansen test 1.00 1.00 1.00 

Degrees of freedom 233 223 233 

Observations 52,080 18,286 33,794 

Countries 22 21 21 

Notes:  The model is estimated with system GMM. The instruments are built with the 3rd to 5th lags of the lag dependent 

variable and the log. expected coal price. Cluster-robust standard errors in parentheses. Clusters are set at country level 

and *, ** and *** respectively denote significance at 10%, 5% and 1% levels. 
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Table 5: Specifications using the number of units instead of installed capacity to construct 

the dependent variable 

Dependent Variable: share  Pre-sample mean estimator Dynamic panel data model 

of units BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Log. expected coking coal price -0.000673 -0.00596** -0.00000740*** -0.00000746*** 

 (0.00177) (0.00271) (0.00000194) (0.00000191) 

Lag dependent 0.960*** 0.954*** 0.975*** 0.973*** 

variable (0.00216) (0.00324) (0.00571) (0.00518) 

Pre-sample mean  -0.0103*** -0.0167***   

(1970-1981) (0.00290) (0.00171)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

Long-term multiplier for the -0.017 -0.1289** -0.3002** -0.2786*** 

effect of coal prices (0.0447) (0.0603) (0.1395) (0.0587) 

p-value of Arrellano-Bond test    0.49 0.82 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   181 193 

Observations 14,506 26,888 18,286 33,794 

Countries 19 18 21 21 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lag of the logarithm of expected coal price 

is used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the instruments 

are built with the 3rd to 5th lag of the logarithm of expected coal prices. In all columns, cluster-robust standard errors 

in parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 5% and 1% 

levels. We do not provide pooled results with BOF and EAF units altogether since the average capacity of BOF and 

EAF units is different. 
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Table 6: Estimation with additional inputs 

Dependent Variable: share  Pre-sample mean estimator Dynamic panel data model 

of installed capacity worldwide BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Log. expected coking coal price -0.0241*** -0.00261 -0.0180*** -0.00373*** 

 (0.00733) (0.00226) (0.00502) (0.00109) 

Log. expected iron ore price -0.00416 0.000467 0.000937 -0.00127 

 (0.0228) (0.00379) (0.00935) (0.00399) 

Log. expected electricity price -0.0245 0.00512 0.0153 0.00178 

 (0.0204) (0.0120) (0.0142) (0.00495) 

Log. expected scrap price 0.0129 0.00155 0.0158 0.00330 

 (0.0127) (0.00409) (0.0117) (0.00329) 

Lag dependent 0.952*** 0.964*** 0.950*** 0.975*** 

variable (0.00750) (0.00165) (0.00987) (0.00626) 

Pre-sample mean  -0.00320 -0.0218***   

(1970-1981) (0.00407) (0.00251)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes  Yes Yes Yes 

Long-term multiplier for the -0.5022*** -0.0717 -0.3582*** -0.1473*** 

effect of coal prices (0.1602) (0.0631) (0.1536) (0.0582) 

Kleibergen-Paap rk Wald F 

statistic 

35.8 55.5   

p-value of Arrellano-Bond test    0.96 0.08 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   213 216 

Observations 10,448 21,812 12,018 25,091 

Countries 17 17 17 17 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 2nd lags of the logarithm of expected input 

prices are used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the 

instruments are built with the 2nd lags of the logarithm of expected input prices and the dependent variable. In all 

columns, cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively 

denote significance at 10%, 5% and 1% levels.  
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Table 7: Simulation results  

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 70.7 58.3 28.4 29.3 41.7 

       

North America 10.5 10.6 10.8 11.3 11.5 16.1 

Europe 16.0 14.4 18.3 8.0 8.7 11.0 

Asia 44.9 45.4 28.9 9.1 9.2 14.6 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia and Chile. 
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Figures 

Figure 1: Evolution of coking coal prices in a few countries (1978-2014) 
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A. Imputation method for plant capacity 

For all the units for which we have capacity levels in 2014, we have assumed that historical capacity 

levels are equal to the 2014 capacity level. This is not a very strong assumption since we look at 

unit-specific capacity levels, not plant-specific levels. For all the units that closed down prior to 

2014, we have imputed a capacity value based on technology (BOF vs. EAF), country and year of 

installation. More precisely, we ran a regression on all operative units in 2014. We took the 

logarithm of their capacity as the dependent variable. The explanatory variables used in the 

regression were technology fixed effects (BOF vs. EAF), technology by country fixed effects, and 

technology by year of installation fixed effects. This regression explained 66% of the variation in 

capacity across production units (R-squared of 0.66). We produced out-of-sample capacity 

estimates for the units that already closed down according to their technology, country and 

installation year.  

In the core of the text, we only provide the capacity data for the list of 22 countries for which we 

can conduct the empirical analysis. In Table A.1.1, we provide the aggregate capacity data for all 

countries. We observe that the 22 countries covered in our analysis represent 75% of world 

capacity.  
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Table A.1.1: Descriptive statistics of James King data on steel capacity (in million tonnes) 

by location and main technology (1980-2014) 

Period 1980-1989 1990-1999 2000-2014 

Technology BOF EAF BOF EAF BOF EAF 

North America  85.7 51.3 81.1 70.8 70.2 88.0 

Europe  307.2 73.6 312.4 105.8 261.2 155.0 

Asia  288.0 42.7 360.5 112.0 656.7 213.3 

Other  67.1 27.5 74.5 46.9 77.3 63.7 

Total 748.1 195.0 828.6 335.5 1,065.3 520.1 
Notes: The table reports the average installed capacity of steel-making production in each region of the world over 

three different periods. Note that this information is based on imputed capacity levels, and covers all available 

observations in the James King data. 

Instead of relying on installed capacity, we directly use the number of units in a robustness check 

displayed in Table 4. Table A.1.2 below provides information on the number of steel units recorded 

in the data for three periods (1980-1989, 1990-1999, 2000-2014), with a breakdown by technology 

and geographical location. We only display the data for the 22 countries that our empirical analysis 

covers.  

Table A.1.2: Descriptive statistics of James King data on steel units by region and main 

technology used in production (1982-2014) 

Period 1980-1989 1990-1999 2000-2014 

Technology BOF EAF BOF EAF BOF EAF 

North America  70.3 233.0 64.4 209.5 53.8 182.6 

Europe  132.9 236.2 126.0 227.3 108.0 233.7 

Asia  199.2 156.8 232.6 217.7 351.1 295.3 

Other  9.0 5.3 9.0 6.9 7.0 7.0 

Total 411.4 631.3 432.0 661.4 519.9 718.5 
Notes: The table reports the average number of active units of steel-making production in each region of the world 

over three different periods. We only report figures for the restricted list of 22 countries used in the regressions. North 

America includes Canada and the United States. Europe includes Belgium, Czech Republic, Finland, France, Germany, 

Italy, The Netherlands, Norway, Poland, Portugal, Russia, Spain, Sweden and Switzerland. Asia includes China, India, 

Japan and Turkey. Other includes Australia and Chile.  

The majority of steel units in our sample are in Asia and there are about 50% more EAF units than 

BOF units. However, this information is misleading because BOF units have a much larger 

production capacity. 

Table A.1.3 presents the share of total capacity (equal to 1 for each year) that was installed in four 

example countries (the US, France, India and China) according to the technology. There is a clear 

surge in Chinese production (both BOF and EAF) from the 90s, and a reduction in BOF production 

in the US. 
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Table A1.3: Share of total capacity by technology (BOF in left panel, EAF in right panel) 

for a few countries (1982-2014) 

 

  

BOF EAF 
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B. Price of other inputs 

Figure B.1 below provide the average values of electricity, scrap and iron ore prices for the 

observations used in the estimation of the models with pre-sample mean of Table 6.  

Figure B.1: Price of iron ore, scrap and electricity in the sample used to estimate the pre-

sample mean estimator of Table 6 (1984-2014) 
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C. Output of ARIMA model to produce coal price expectations 

Figure C.1 shows, for the US and China, the expectations on coking coal prices computed with the 

ARIMA model presented in section 3. Predictions are only displayed for specific years (1995, 

2000, 2005, 2010 and 2015) even though they were computed for each year and country used to 

run our econometric model. The realized coal prices correspond to the black lines. 

Figure C.1: Expected coking coal prices as predicted with the ARIMA model for the US 

(left panel) and China (right panel) 

 

  

USA China 
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D. Alternative specifications of coal prices 

1. Using coal prices in levels and not in logarithm 

Table D.1.1 presents the estimation where the expected coal prices are included in levels instead 

of the logarithmic form.  

Table D.1.1: Specifications using expected coal prices in levels  

Share of installed capacity  Pre-sample mean estimator Dynamic panel data model 

Worldwide (x 1,000) BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Expected coking coal price -0.000129* 0.00003 -0.000189*** 0.00002 

 (0.00007) (0.00004) (0.00007) (0.00002) 

Lag dependent 0.956*** 0.962*** 0.961*** 0.969*** 

variable (0.00513) (0.00195) (0.00657) (0.00232) 

Pre-sample mean  -0.00417 -0.0188***   

(1970-1981) (0.00296) (0.00325)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

p-value of Arrellano-Bond test    0.80 0.20 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   183 193 

Observations 14,506 26,888 18,286 33,794 

Countries 19 18 21 21 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lag of the logarithm of expected coal price 

is used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the instruments 

are built with the 3rd to 5th lag of the logarithm of expected coal prices. In all columns, cluster-robust standard errors 

in parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 5% and 1% 

levels.  
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In Table D.1.2, we have added a quadratic terms. Results suggest that plants are more sensitive to 

marginal increases in coal prices when they are low. This corroborates our preference for a model 

in logarithm. 

Table D.1.2: Specifications using expected coal prices in level and their squared value  

Share of installed capacity  Pre-sample mean estimator Dynamic panel data model 

worldwide (x 1000) BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Expected coking coal price -0.000393** -0.00003 -0.0000003** 0.0000019 

 (0.000162) (0.00004) (0.0000001) (0.00003.85) 

squared 0.0000014* 0.0000003 0.0000008* 0.00000005 

 (0.0000007) (0.0000002) (0.000005) (0.0000001) 

Lag dependent 0.956*** 0.962*** 0.960*** 0.969*** 

variable (0.00514) (0.00194) (0.00716) (0.00270) 

Pre-sample mean  -0.00298 -0.0183***   

(1970-1981) (0.00310) (0.00289)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

p-value of Arrellano-Bond test    0.78 0.20 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   295 305 

Observations 14,506 26,888 18,286 33,794 

Countries 19 18 21 21 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lags of the expected coal price in level and 

squared are used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the 

instruments are built with the 3rd to 5th lags of expected coal prices (in level and squared). In all columns, cluster-robust 

standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 

5% and 1% levels. 
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2. Using the contemporaneous price of coal 

Table D.2 reports the estimation results obtained when using the current coal prices instead of the 

expected ones.  

Table D.2: Specifications using contemporaneous coal prices 

Share of installed capacity  Pre-sample mean estimator Dynamic panel data model 

worldwide (x 1,000) BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Log. coal price -0.00732 0.00195 -0.00739 0.000580 

 (0.00000426) (0.00000177) (0.00636) (0.00116) 

Lag dependent 0.960*** 0.964*** 0.959*** 0.968*** 

variable (0.00455) (0.00179) (0.00680) (0.00248) 

Pre-sample mean  -0.00436* -0.0169***   

(1970-1981) (0.00247) (0.00308)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

p-value of Arrellano-Bond test    0.93 0.12 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   219 229 

Observations 17,328 31,922 21,220 39,149 

Countries 21 21 21 21 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lag of the logarithm of the coal price is 

used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the instruments 

are built with the 3rd to 5th lag of the logarithm of coal prices. In all columns, cluster-robust standard errors in 

parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 5% and 1% 

levels.  
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3. Using steam coal prices instead of coking coal prices 

In Table D.3, we use expected steam coal prices instead of expected coking coal ones.  

Table D.3: Specifications using expected stream coal prices 

Share of installed capacity  Pre-sample mean estimator Dynamic panel data model 

worldwide (x 1,000) BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Log. expected steam coal price -0.0145 -0.00127 -0.0405*** -0.00561*** 

 (0.0124) (0.00198) (0.0104) (0.00212) 

Lag dependent 0.942*** 0.962*** 0.950*** 0.973*** 

variable (0.0144) (0.00122) (0.0126) (0.00286) 

Pre-sample mean  -0.00792 -0.0175***   

(1970-1981) (0.00470) (0.00286)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

p-value of Arrellano-Bond test    0.73 0.28 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   193 193 

Observations 13,761 27,139 17,607 33,930 

Countries 20 21 22 23 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lag of the logarithm of the expected steam 

coal price is used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the 

instruments are built with the 3rd to 5th lag of the logarithm of expected steam coal prices. In all columns, cluster-robust 

standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 

5% and 1% levels.  
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E. Choice of estimation method 

1. Using a different pre-sample period 

Using a longer pre-sample period starting in 1960 has little influence on the results obtained (see 

Table E1 below). 

 Table E.1: Specifications with a pre-sample starting in 1960 

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  -0.00807*** -0.00687* 0.000561 

coal price (0.00189) (0.00355) (0.00197) 

Lag dependent 0.961*** 0.955*** 0.961*** 

variable (0.00262) (0.00429) (0.00190) 

Pre-sample mean  -0.00355** -0.00554** -0.00856*** 

(1970-1981) (0.00126) (0.00209) (0.00175) 

Year fixed effects Yes Yes Yes 

Long-term multiplier for the -0.2092*** -0.1532* 0.0143 

effect of coal prices (0.0507) (0.0865) (0.0499) 

Observations 41,394 14,506 26,888 

Countries 19 19 18 

Notes:  The model is estimated with 2SLS. The logarithm of the expected price of coking coal is instrumented with its 

5th lag. Cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively 

denote significance at 10%, 5% and 1% levels. 

 

2. Results with a fixed effect model 

In Table E.2, we present the results obtained when using a fixed-effect estimator. This model 

assumes that expected coking coal prices are fully exogenous. Results are biased and the model is 

inconsistent. 

Table E.2: Specifications with a fixed effect model 

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  0.205*** 0.545*** 0.0490*** 

coal price (0.0265) (0.0390) (0.0112) 

Unit fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

Observations 52080 18286 33794 

Countries 22 21 21 

Notes:  The model is estimated with demeaning and the log expected coking coal prices is assumed to be exogenous. 

Cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively denote 

significance at 10%, 5% and 1% levels. 
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3. Results with a first difference estimator 

Tables E.3.1 and E.3.2 feature first-difference estimators. Table E.3.1 uses a transformed model 

based on Chamberlain (1992) and Wooldridge (1997). In this model, instrumentation (with the 

third lag of the difference in log. expected coal prices) is weak. Weak instrumentation with lagged 

differences has been reported many times when using models in first differences with processes 

that are time-persistent. In this situation, we know that instrumentation is biased towards a model 

in first differences in which we would assume that the independent variables are exogenous (as 

shown in Staiger and Stock, 1997; and Blundell and Bond, 1998). In Table E.3.2, we report a model 

in first difference in which we assume that the expected price of coal is exogenous. All results lead 

to a positive association between coal prices and installed capacity, calling for a different modelling 

approach. 

Table E.3.1: Specifications with a FD model based on Chamberlain (1992) and Wooldridge 

(1997)  

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  0.304** 0.924*** 0.0876** 

coal price (0.125) (0.322) (0.0410) 

Year fixed effects Yes Yes Yes 

Kleibergen-Paap rk Wald F 

statistic 

4.18 4.74 3.74 

Maximal IV size bias >25% >25% >25% 

Observations 43,448 15,250 28,198 

Countries 21 20 20 

Notes:  The model is estimated with 2SLS, using the third lagged difference of the log expected coking coal prices are 

an instrument. Cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** 

respectively denote significance at 10%, 5% and 1% levels. 

Table E.3.2: Specifications with a FD model with assumption of exogenous coal prices 

 Share of installed capacity worldwide (x 1,000) 

BOF & EAF 

(1) 

BOF 

(2) 

EAF 

(3) 

Log. expected coking  0.0635** 0.184*** 0.0164* 

coal price (0.0000224) (0.0000523) (0.00000794) 

Year fixed effects Yes Yes Yes 

Observations 49919 17526 32393 

Countries 22 21 21 

Notes:  The model is estimated with OLS, using the first difference of each variable. Cluster-robust standard errors in 

parentheses. Clusters are set at country level and *, ** and *** respectively denote significance at 10%, 5% and 1% 

levels.  
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4. Splitting the sample into two periods 

We split the sample into two and run the pre-sample mean estimator separately for 1982-1999 and 

2000-2014. The pre-sample means are respectively obtained with the data from 1970-1981 and 

1990-1999. Results indicate that the impact of coal prices on BOF production might have been 

stronger after 2000. However, results for the long-term multiplier are in fact not statistically 

different between columns 1 and 2. 

 

Table E.4.1: Pre-sample mean estimation of the impact of expected coal prices on the share 

of installed capacity located in a given country 

 Share of installed capacity worldwide (x 1,000) 

Technology BOF BOF EAF EAF 

Sample period 

(Pre-sample period) 

1982-1999 

(1970-1971) 

2000-2014 

(1990-1999) 

1982-1999 

(1970-1971) 

2000-2014 

(1990-1999) 

Column (1) (2) (3) (4) 

Log. expected coking  -0.00882** -0.0527*** 0.00170 -0.000298 

coal price (0.00381) (0.0156) (0.00149) (0.00575) 

Lag dependent 0.962*** 0.944*** 0.962*** 0.969*** 

variable (0.00788) (0.0103) (0.00255) (0.000754) 

Pre-sample mean  -0.00215 -0.00197 -0.0298*** -0.00664** 

(1970-1981) (0.00453) (0.00653) (0.00341) (0.00243) 

Year fixed effects Yes Yes Yes Yes 

Long-term multiplier for the -0.2294** -0.9461** 0.0444 -0.0096 

effect of coal prices (0.0859) (0.3872) (0.0390) (0.1844) 

Weak identification test:     

Kleibergen-Paap rk Wald F  1,504 242 1,239 260 

Maximum IV size bias <10% <10% <10% <10% 

Observations 8,708 5,798 14,195 12693 

Countries 16 13 15 13 

Notes:  The model is estimated with 2SLS. The logarithm of the expected price of coking coal is instrumented with its 

5th lag. Cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively 

denote significance at 10%, 5% and 1% levels. 
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F. Simulation 

1. Results using different carbon prices 

Table F.1.1: Simulation results with a carbon price of $ 10 per tonne 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 71.2 66.3 28.4 28.8 33.7 

       

North America 10.5 10.5 10.8 11.3 11.4 13.2 

Europe 16.0 15.4 17.1 8.0 8.2 9.2 

Asia 44.9 45.1 38.2 9.1 9.1 11.3 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia (1987-1989) and Chile (2011-2014). 

Table F.1.2: Simulation results with a carbon price of $ 50 per tonne 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 70.3 52.4 28.4 29.7 47.6 

       

North America 10.5 10.6 10.7 11.3 11.5 18.3 

Europe 16.0 13.7 18.9 8.0 9.0 12.4 

Asia 44.9 45.7 22.4 9.1 9.2 16.9 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia and Chile. 
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2. Results with alternative specifications 

Table F.2.1: Simulation results using instruments in first difference and the pre-sample 

mean estimator (Table 3, columns 2 and 4) 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 70.5 56.5 28.4 29.5 43.5 

       

North America 10.5 10.6 10.8 11.3 11.5 16.7 

Europe 16.0 14.2 18.3 8.0 8.8 11.3 

Asia 44.9 45.4 27.1 9.1 9.2 15.5 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia and Chile. 

Table F.2.2: Simulation results with a dynamic panel data model and GMM (Table 5) 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 73.7 73.1 53.1 26.3 26.9 46.9 

       

North America 10.8 11.2 14.5 10.4 10.7 18.9 

Europe 18.2 15.8 28.9 7.7 7.8 14.2 

Asia 44.1 45.5 8.8 8.1 8.4 13.7 
Notes: North America includes Canada and the US; Europe includes Germany, Spain, Italy, France, Poland, Belgium, 

Czech Republic, Sweden, Finland, the Netherlands, Spain, Portugal, Switzerland and Norway; Asia includes China, 

Japan, Russia, Turkey and India. Other countries included in the world average are Australia and Chile. 

Table F.2.3: Simulation results using expected coal prices in levels (Table D.1.1) and the 

pre-sample mean estimator 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 68.6 53.5 28.4 31.4 46.5 

       

North America 10.5 10.5 8.4 11.3 11.4 18.0 

Europe 16.0 12.7 14.3 8.0 10.8 12.2 

Asia 44.9 45.2 30.5 9.1 9.1 16.2 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia and Chile. 
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3. Heterogeneous effects across region and technology 

Table F.3.1: Specifications with region-specific effects 

Dependent Variable: share  Pre-sample mean estimator Dynamic panel data model 

of units (x 1,000) BOF 

(1) 

EAF 

(2) 

BOF 

(3) 

EAF 

(4) 

Log. expected coking coal price     

     

Europe -0.00873 0.000938 -0.00923** 0.000388 

 (0.00608) (0.00126) (0.00468) (0.000910) 

North America -0.00885 0.000717 -0.0108** -0.000113 

 (0.00611) (0.000761) (0.00476) (0.000657) 

Asia -0.00732 0.000838 -0.00863 0.000262 

 (0.00716) (0.000846) (0.00562) (0.000850) 

Other -0.00580 0.00324 -0.00621 0.000239 

 (0.00696) (0.00256) (0.00480) (0.00103) 

Lag dependent 0.956*** 0.963*** 0.959*** 0.970*** 

variable (0.00515) (0.00185) (0.00708) (0.00292) 

Pre-sample mean  -0.00337 -0.0183***   

(1970-1981) (0.00309) (0.00274)   

Unit fixed effects No No Yes Yes 

Year fixed effects Yes Yes Yes Yes 

p-value of Arrellano-Bond test    0.78 0.20 

for AR(2)     

P-value of Hansen test   1.00 1.00 

Degrees of freedom   307 317 

Observations 14,506 26,888 18,286 33,794 

Countries 19 18 21 21 

Notes:  The pre-sample mean estimator is estimated with 2SLS, and the 5th lag of the logarithm of expected coal price 

is used as instrument. The fixed effect dynamic panel data model is estimated with system GMM, and the instruments 

are built with the 3rd to 5th lags (of the logarithm of expected coal prices and the dependent variable). In all columns, 

cluster-robust standard errors in parentheses. Clusters are set at country level and *, ** and *** respectively denote 

significance at 10%, 5% and 1% levels. 

 

Table F.3.2: Simulation results with region-specific effects and pre-sample mean estimator 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 71.6 70.8 62.4 28.4 29.2 37.6 

       

North America 10.5 10.6 10.3 11.3 11.4 14.4 

Europe 16.0 14.6 17.1 8.0 8.6 10.1 

Asia 44.9 45.3 34.6 9.1 9.2 13.0 
Notes: North America includes Canada and the US; Europe includes Germany, Italy, France, Poland, Belgium, Czech 

Republic, Sweden, Finland, the Netherlands, Portugal and Norway; Asia includes China, Japan, Turkey and India. 

Other countries included in the world average are Australia and Chile. 
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Table F.3.3: Simulation results with region-specific effects and a dynamic panel data model 

using GMM 

Indicator World capacity that is BOF (%) World capacity that is EAF (%) 

Scenario BAU Europe All BAU Europe All 

       

World 73.7 73.1 64.7 26.3 26.9 35.3 

       

North America 10.8 11.0 11.4 10.4 10.5 13.3 

Europe 18.2 16.9 21.6 7.7 8.1 10.4 

Asia 44.1 44.7 31.0 8.1 8.2 11.5 
Notes: North America includes Canada and the US; Europe includes Germany, Spain, Italy, France, Poland, Belgium, 

Czech Republic, Sweden, Finland, the Netherlands, Spain, Portugal, Switzerland and Norway; Asia includes China, 

Japan, Russia, Turkey and India. Other countries included in the world average are Australia (1982-1989) and Chile 

(2006-2014). 
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G. Unit root tests 

We check for the stationarity of our dependent variable. We perform the Levin–Lin–Chu test, the 

Harris–Tzavalis test, the Im–Pesaran–Shin test and four Fisher-type tests to look for unit roots. The 

tests, reported below, reject the null hypothesis that the panels of our dependent variable have unit 

roots. This means that the assumption of stationarity in the econometric models appears to be valid.  

We have also performed the Fisher-type tests for the independent variable (coal prices). We cannot 

perform the other tests since they require a strongly balanced dataset and we have missing data on 

that variable. The Fisher-type tests also go in the direction of stationarity. 

Table G.1: Unit root tests 

Variable Share of installed capacity Log. expected coking coal price 

Test result Statistic P-value Statistic P-value 

Fisher-type unit-root tests      

- Inverse chi-squared 23,600 <0.0001 8701 <0.0001 

- Inverse normal Z -96.43 <0.0001 51.95 <0.0001 

- Inverse logit L* -110.14 <0.0001 50.12 <0.0001 

- Modified inv. chi-squared Pm             154.07 <0.0001 55.09 <0.0001 

Levin-Lin-Chu test -14,000 <0.0001   

Harris-Tzavalis unit-root test 0.8868 <0.0001   

Im-Pesaran-Shin unit-root test -33.84 <0.0001   

Notes: We subtracted the cross-sectional averages from the series before running the tests with the 1970-2014 data 

(since our models include year fixed effects). Fisher-type tests are based on augmented Dickey-Fuller tests, using one 

lag and with drift. The data was too unbalanced to perform the Levin-Lin-Chu, the Harris-Tzavalis and the Im-Pesaran-

Shin tests on the log. expected coking coal price. 

 


