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Abstract

The objective of this study is to examine the impact of firms’ financing constraints on
innovation activities in renewable (REN) versus fossil-fuel (FF) technologies. Our empirical
methodology relies on the construction of a firm-level dataset for 1,300 European firms over
the 1995-2009 period combining balance-sheet information linked with patenting activities
in REN and FF technologies. We estimate the importance of the different types of financing
(e.g. cash flow, long-term debt, and stock issues) on firms’ patenting activities for the differ-
ent samples of firms. We use count estimation techniques commonly used for models with
patent data and control for a large set of firm-specific controls and market developments
in REN and FF technologies. We find evidence for a positive impact of internal finance on
patenting activities for the sample of firms specialized in REN innovation, while we find no
evidence of this link for other firms, such as firms conducting FF innovation or large mixed
firms conducting both REN and FF innovation. Hence, financing constraints matter for
firms specialized in REN innovation but not for other firms. Our results have important
implications for policymaking as the results emphasize that small innovative newcomers in
the field of renewable energy are particularly vulnerable to financing constraints.
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1 Introduction

The ability to achieve sizeable greenhouse gases emissions reductions to address climate change

without compromising future economic growth is linked to the deployment and development of

clean technologies. The energy sector is key in this respect, as emissions from energy production

are responsible for 40% of worldwide carbon emissions (IEA, 2015). Decarbonizing the energy

sector implies shifting away from fossil-fuels, such as coal, oil and gas, which today still accounts

for 70% of worldwide electricity production and 80% of global energy investments. Despite

recent developments in renewable energy, in particular in wind and solar energy, experts worry

that the current pace of innovation efforts in renewable technologies may not be sufficient to

achieve the commitment of the Paris agreement to limit global temperature rise below 2 degrees

Celsius (IEA, 2017). While technological advances are needed to improve further efficiency and

reduce plant-level integration costs of renewables, the share of renewable (REN) energy in

corporate energy R&D spending remains below 15% (FS, UNEP and BNEF, 2016) and most

innovation efforts tend to be directed to existing incumbent fossil-fuel (FF) technologies.

Theoretically, several market failures explain why firms tend to underinvest in the develop-

ment of renewable energy technologies. First, just like other forms of R&D, firms innovating in

REN technologies cannot fully appropriate the returns on their innovation – this is the so-called

‘knowledge externality’. Second, in the absence of environmental policy setting a price on car-

bon emissions, the ‘environmental externality’ implies that firms have no incentives to develop

further these low-carbon technologies. Third, path-dependency in innovation leads technical

change to be directed towards FF technologies, where most innovation took place historically

(Acemoglu et al., 2012; Noailly and Smeets, 2015). Finally, an additional market failure that

has received less attention in the energy R&D literature is the prevalence of credit constraints

to finance R&D. Theoretically, all R&D investments are susceptible to financing constraints due

to intrinsic characteristics of the R&D process (i.e. uncertain outcome of the R&D process, the

lack of collateral values and information asymmetries between investors and innovating firms;

Hall and Lerner (2010)). An open question, however, is whether financing constraints may

be more severe for R&D in REN than in FF technologies, thereby affecting not only the rate

but also the direction of innovation. There are several arguments why financing R&D may

be more difficult for firms innovating in REN (vs. FF) technologies. First and foremost, the
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technologies present different characteristics substantiating distinct risk-profiles for investors:

REN technologies are younger, less mature, and may require higher irreversible sunk costs than

their fossil-fuel counterparts. In addition, due the presence of the environmental externality,

renewable technologies are highly dependent on policy support, which tends to fluctuate over

time thereby generating additional risks for investors.

In this paper, we aim to provide some novel empirical evidence on the impacts of financing

constraints on innovation in REN and FF technologies. So far, the literature on energy R&D has

mainly focused on the role of energy prices, market developments and environmental policies

(Popp, 2002; Johnstone et al., 2010), and more recently on the impact of path-dependency

on the number of patents in renewable technologies (Noailly and Smeets, 2015). By contrast,

the role of financial constraints in commanding energy innovation has received little attention

in previous research. In a recent contribution, Howell (2017) estimates the impact of being

awarded an early-stage research grant by the US Department of Energy on revenues, innovation

and survival of small high-tech firms in various sectors related to energy. She finds that firms

awarded a grant were more likely to receive subsequent venture capital and to increase their

patenting activities and revenues. She finds evidence of a larger effect for younger firms and

for firms in less mature technology areas such as marine and ocean energy or electric vehicles

compared to incumbent energy technologies in coal or gas, suggesting that immature clean

technologies are particularly affected by financing constraints.

By studying how the availability of finance differentially affects R&D investments in renew-

able and fossil-fuel energy technologies, our study aims to contribute to a new research agenda

on the role of financing constraints on the direction of innovation. So far, the evidence has

remained mainly anecdotal and in sectors outside energy. Abraham (2011) note for instance

that the pharmaceutical industry has become locked into innovation in drugs which are less

complex and provide easier returns than other areas of research, such as diagnostics or life-style

remedies. In a sector like energy where externalities are pervasive, understanding how financ-

ing constraints affect technological choices is crucial to design effective policies. Our analysis

innovates compared to Howell (2017) by focusing on European firms rather than US companies.

This is important as financial intermediation is not structured in the same way on the US and

European markets and policies for REN technologies have been relatively more generous in
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Europe over the last decades. Our study is also novel as it explicitly combines the environmen-

tal economics literature with the well-developed framework in corporate finance studying the

role of finance for innovation. This literature generally finds that R&D is difficult to finance

externally and that therefore debt and equity tend to be disfavoured sources of finance for R&D

investment (Hall and Lerner, 2010; Bond et al., 2005; Brown and Petersen, 2009).

In line with the corporate finance literature, our econometric method will aim to detect

financial constraints by comparing different groups of firms in terms of their R&D investments’

sensitivity to internal financing (e.g. cash flows). Our analysis relies on an unique dataset

combining balance-sheet data with data on firm-level innovation activities (as measured by

patents) in renewable and fossil-fuel energy technologies for a sample of 1,300 European firms

over the period 1995-2009. Our results suggest that small innovating firms specialized in re-

newable technologies face important financial constraints: their patenting activities are more

sensitive to shocks in cash flows than other firms, suggesting that they mainly rely on internal

finance to fund R&D. By contrast, firms innovating in fossil-fuel technologies are less financially

constrained and can more easily resort to external financing.

Our study is structured as follows. Section 2 provides the conceptual framework underpin-

ning our analysis. Section 3 gives a description of the data. Section 4 presents our empirical

framework and results. Section 5 concludes.

2 Conceptual framework and related literature

2.1 Financing R&D

The theoretical literature in corporate finance predicts that innovation is difficult to finance

externally (Hall and Lerner, 2010). This is explained by several factors.

First, the majority of R&D expenditures concerns wages of R&D workers, rather than

capital investment. This implies that banks often cannot claim collaterals in return for R&D

investment. First-time innovators will also often lack a valuable asset that can serve as collateral.

As a result, the availability of external (debt) finance is either limited or very costly. Second, due

to the highly uncertain nature of the outcome of the innovation process, so is its financial return.

The high degree of uncertainty around innovation makes it always difficult to know in advance

whether a firm will be successful at innovating or not. As a result, the risk premium charged
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on external sources of finance is often prohibitively high. Finally, market failures affecting

investments also play a role for R&D investment. There exists asymmetric information between

the provider of finance and the innovator, since the latter tends to have more information about

potential success or failure. As a result, the high-success firms will tend to exit the market as

they cannot signal their quality to financiers. Further, moral hazard may induce innovators to

spend money on more risky projects than agreed upon ex-ante with the financier. Anticipating

such behavior, financiers could limit the availability of external financing, or offer it at higher

cost.

Taken together, these problems imply that external (to the firm) financing of innovation

can be quite costly. This creates a hierarchy in the corporate financing of innovation (Hall and

Lerner, 2010): firms will typically first deplete their internal cash flow (and possibly part of their

cash stocks) before turning to external sources of financing. A corollary of this result is that

firms that are relatively cash-constrained will be more sensitive to shocks in both the internal

and external supply of financing, relative to their cash-replete counterparts. Figure 1 borrowed

from Brown et al. (2012) plots the relationship between the quantity of funds (horizontal axis)

and the marginal costs of finance (vertical axis). The supply of finance S exhibits first constant

marginal costs as long as cash flows (CF) are being depleted. As cash flows are exhausted, the

firm must resort to external finance which is more costly (the upward trending part of S). The

equilibrium level of R&D is at the intersection between the demand for R&D (DRD) and the

supply of finance S. This equilibrium depends crucially on cash flows: a jump in cash flows for

instance from CF to CF’ (which shifts the supply of finance to S’) raises the equilibrium level

of R&D from RD to RD’. Hence, a shock in internal finance leads to more R&D.
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Figure 1: Financing hierarchy for R&D

A number of studies have tested empirically these theoretical insights. The standard ap-

proach for testing for financial constraints has been to examine the sensitivity of cash flows

to R&D investments. In addition, recent research further stressed the importance of R&D

smoothing. The empirical evidence finds that in particular small, young, and high-tech firms’

R&D activities are sensitive to internal and external (equity) cash constraints, unlike large and

mature firms (Brown and Petersen, 2009; Brown et al., 2012; Himmelberg and Petersen, 1994).

Another insight of this literature is that, when resorting to external sources of finance,

equity financing trumps debt financing (Brown et al., 2012). Two important reasons for this

are that, first, equity financing does not require collateral, and second, unlike providers of debt,

equity investors share in the upside of the investment. This makes external equity cheaper than

external debt. Indeed, Brown and Petersen (2009), Brown and Petersen (2011) and Brown et al.

(2012) all demonstrate the sensitivity of small, young, and technology-intensive firms’ R&D to

external equity financing constraints. Given that large and mature firms typically do not rely

on external equity for their marginal innovation financing needs, their R&D does not exhibit a

significant elasticity with respect to such constraints.

However, there are a number of caveats to these established insights that are important for
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the purpose of the current study. First, the majority of the studies on the corporate financing

of innovation are undertaken for US firms. It is not completely clear that their results translate

one-to-one to the European context, given the substantial differences in the structure of capital

markets.1 Brown et al. (2012) study R&D and financing constraints in a number of European

countries. However, their study is particular in the sense that they only study publicly listed

firms. This constitutes the second caveat to the established literature in this field, which mostly

focuses on samples of publicly traded firms. In this context, the typical definition of a small

firm is one with less than 500 employees, whereas a young firm is one whose IPO took place

less than 15 years ago.

In an implicit acknowledgement of these limitations, a more recent literature has developed

that explicitly considers the importance of non-equity external financing for truly small (start-

up) firms (Kerr and Nanda, 2015). One important insight from this literature is that for many

small firms, debt financing is an important resource for innovation. Partly, this is due to the

fact that innovation sometimes does produce some valuable collateral, such as patents (Sudheer

et al., 2017), as well as the increased willingness and ability of (US) banks to monitor small and

innovative corporate borrowers (Chava et al., 2013; Cornaggia et al., 2015). Yet in other part,

it is also due to costs associated with being a publicly listed firm undertaking R&D that were

not previously acknowledged. Risk-averse managers of public corporations, who recognize the

highly skewed returns of innovation, as well as its stochastic failure, will not innovate or only

engage in incremental innovation when confronted with short-term oriented stockholders. In

this line of thinking, there is little symbiosis between public equity and innovation.

In a survey on the capital structure decision of new US firms, Robb and Robinson (2014)

further uncover some interesting stylized facts of small-firm debt financing. Although their

study is not specifically aimed at innovative or high-tech firms, the underlying survey is biased

towards such firms. Two results stand out in particular: First, newly founded businesses rely

heavily on formal outside debt financing, in the form of bank loans and business credit lines.

This even holds for the relatively small number of start-ups that have access to (private) equity

(such as venture capital, or angel investment). Second, many small entrepreneurs overcome the

1In particular, EIB (2015) quotes Mario Draghi as saying that ‘in the United States 80% of credit interme-
diation goes via the capital markets. In the European situation it is the other way around; 80% of financial
intermediation goes through the banking system’ (p.110). This suggests that the importance of equity markets
(vs. debt markets) may not be as prevalent in Europe as it is in the US.
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lack of corporate collateral by leveraging their personal assets as collateral or guarantees for

bank financing.

Taken together, the findings from the literature argue that the nature of the innovation

process (lack of collateral, uncertainty, asymmetric information) inhibits the financing of inno-

vation. The corporate finance literature sketches a financing hierarchy: first, internal cash flow

is depleted, followed by external equity financing, possibly followed by external debt financing.

As most of this work has been conducted in the context of US and/or publicly listed firms, this

casts some doubts on the financing hierarchy relevant for European private firms. Given the

limited importance of equity markets in (continental) Europe, equity financing is not likely to

be a viable substitute. We can thus expect that European R&D firms will first deplete inter-

nal cash before resorting to debt and possibly equity financing. In addition, the literature has

also firmly established that small, young, and technology-intensive firms are more sensitive to

financial constraints than large and mature firms, so that the former are likely more sensitive

to a shock in cash flows.

2.2 Financing energy R&D

While the previous section has established that financial frictions are particularly relevant for

R&D, the nature of the problem may also differ across technologies. Energy technologies for

instance present specific characteristics that make them largely dependent on external finance:

they are highly capital-intensive, require large upfront investments, and these investments are

often irreversible. By contrast to pharmaceuticals or IT, very large capital investments are

required in the energy sector after the R&D phase in order to supply energy services using

new energy technologies (Hartley and Medlock, 2017). This explains why investments in energy

exhibit very different risk profiles than investments in other sectors.

Within the energy sector, REN and FF technologies also present distinct risk profiles, as

investments in renewable energy face specific challenges. First, REN technologies still largely

rely on policy support. Government intervention is justified in this sector by the environmental

externality. Yet, the risk that policies supporting clean energy are subject to change makes it

challenging for investors, who might hold an investment under successive governments. Looking

at the determinants of venture capital financing in the renewable energy sector using data on
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deals in the ‘clean tech’ industry for 26 countries over the period 2005-2010, Criscuolo and

Menon (2015) find that national policies designed with a long-term perspective (e.g. feed-in

tariffs) are associated with higher investment levels compared to more short term fiscal policies

(e.g. tax incentives, rebates).

Second, REN technologies present higher technological risks than traditional FF ones. Re-

newables usually require higher upfront capital investments. Nelson and Shrimali (2014) esti-

mate that upfront capital costs represent 84-93% of total project costs for wind, solar and hydro

energy (compared to 66-69% for coal and 24-37% for gas). More importantly, most of these

technologies are still in an early stage of development, and failure rates are still high. Ghosh and

Nanda (2010) and Nanda and Fleming (2015) discuss how entrepreneurs in renewables need risk

capital, not only in early stages, but also later on to demonstrate that the technology can work

at scale. This is less of a problem for FF technologies that are well-established in the sector.

Howell (2017) also finds that it is mainly immature clean technologies in hydropower (wave and

tidal), carbon capture and storage, building and lighting efficiency and electric vehicles that

most benefit from an early-stage research grant, while coal, natural gas, biofuels and recycling

technologies do not. Although biofuels and recycling are also clean technologies, they are older

and more mature and thereby less affected by financing constraints.

Finally, firms active in renewables tend to be relatively small, both in the R&D and deploy-

ment stage (Noailly and Smeets, 2015; Donovan, 2015). As a consequence, REN projects are

often small (compared to nuclear or gas for instance) and small companies do not have an in-

stitutional track record to secure debt financing. Incumbents, by contrast, are large companies

that often remain specialized in FF technologies. For such firms, shifting to REN often implies

cannibalizing their core business. As a result, energy producing firms and utilities are far from

active in acquiring promising clean energy startups, thus limiting the available exit options for

REN firms (Ghosh and Nanda, 2010; Gaddy et al., 2016).

Altogether, these factors explain why REN investments have an unattractive risk/return

profile compared to FF investments.2 In the realm of REN innovation, this implies a twofold

2The specificities of the REN sector also explain why project financing is so popular, compared to other sources
of financing. Project financing is mainly used for the deployment stage (i.e. construction of REN generating
facilities, such as solar or wind turbines) and is less suited for R&D investment, which is why we abstract from
project financing in this paper. This form of financing provides a fixed-income which relies solely on the ability
of the project cash flows to repay the amounts borrowed; it typically involves the creation of a project company
(Special Purpose Vehicle) which is the legal owner of the project assets and which has contractual agreements
with a number of other parties that include off takers, operators, suppliers, insurers and so on. About 30% of the
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financial ‘squeeze’: first, compared to FF innovation, REN innovation is more uncertain, making

external financing more difficult. Second, REN innovation is typically undertaken by small and

young firms, which only have limited internal funds. Hence, we can expect in particular small

firms specialized in REN innovation to face important financial constraints, as reflected in a

higher sensitivity of patenting activities to internal cash flows. Small firms specialized in FF

innovation should be less financially constrained than REN firms. Finally, we would expect large

mature firms, predominantly innovating in FF technologies, to show no evidence of financial

constraints, while there might be some weak evidence that internal finance matters for their

REN innovation activities (although to much lower extent than for small firms specialized in

REN).

3 Data and empirical strategy

3.1 Data sources and descriptives

Patents data We measure innovation in REN and FF technologies using patent data, fol-

lowing the literature on low-carbon innovation (?Johnstone et al., 2010). There are several

advantages and limitations to working with patent data, which have been discussed at length in

the literature.3 We extract patents from the Orbis dataset provided by Bureau van Dijk, which

has recently been linked to the European Patent Office’s (EPO) PATSTAT dataset. The main

advantage of using the Orbis-PATSTAT dataset to extract relevant patents is that it provides

us with an unique firm’s identifier that allows us to match firm-level patents to firms’ balance

sheet and income statement data.

We extract data on firms’ patenting activities in REN and FF technologies using Interna-

tional Patent Classification (IPC) codes to select patents in REN and FF technologies. REN

patents include patents in wind, solar, hydro, marine, biomass, geothermal and waste energy

technologies (Johnstone et al., 2010), while FF patents include patents related to production of

total new investment deployed into large scale REN projects over the 2003-2013 period was financed by project
finance debt (Alonso, 2014).

3A main caveat of working with patents is that not all inventions are patented, as for strategic reasons firms
may prefer not to disclose valuable information. The value of patents is also very heterogeneous: only a few
patents will lead to successful commercial applications. Despite these limitations, the link between patents and
inventions has been clearly established in the literature (Griliches, 1990) as patents are correlated with other
indicators of innovative activity, such as R&D expenditures or new product introductions. For our purpose, the
main advantage of patent data is that they are highly disaggregated and are available at the firm and technology
level.
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fuel gases by carbureting air, steam engine plants, gas turbine plants, hot-gas or combustion-

product positive displacement engine, steam generation, combustion apparatus, furnaces and

improved compressed-ignition engines (Lanzi et al., 2011).

Just as in Noailly and Smeets (2015), we focus on firms that have been granted at least

one REN or FF patent at the EPO and 17 national patent offices (EU-15, Switzerland and

Norway). We count the number of granted patents per firm per year over the 1980-2009 period,

including only priority patents and excluding equivalent patent filings. The fact that we focus

on granted patents of firms’ registered in Orbis implies that our sample is not likely to include

the lowest quality patents.4 We use the application year of priority patents, as this is closer

to the year of the inventive idea than the year in which the patent was granted. We compute

the annual count of REN and FF patents per firm as well as firm-specific REN and/or FF

knowledge stocks, which are the cumulated number of patent counts over the period.5

The firms in our sample have been granted a total of 21,487 patents during the period

1980-2009. 16,854 (78%) of these apply to FF innovations, whereas the remaining 4,633 (22%)

apply to REN innovations.6. The total patent count in this period is 12,377, with 8,384 (68%)

allocated to FF innovation and 3,953 (32%) to REN innovation.

The strong bias towards FF innovation in the sample as a whole masks the fact that REN

innovation has caught up with FF innovation spectacularly since the second half of the 1990s,

as witnessed in Figure 2. Whereas the average gap between FF and REN innovation before

1995 was around 500 patents, by 2009 the total number of granted REN patents at European

patent offices has actually overtaken the number of granted FF patents.

4In addition, we restrict our analysis to firms that could be linked to the Orbis dataset, therefore excluding
patents from individuals, which may be of lower value.

5Knowledge stocks are calculated using the perpetual inventory method, assuming an annual depreciation
rate of 15%.

6We focus on the 1980-2009 period for descriptive purposes, although in the econometric analysis we later
restrict our analysis to the 1995-2009 period, due to limited availability of firm-level financial data before 1995
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Figure 2: The development in FF and REN patents (3-year moving averages)

Further investigation shows that our dataset is composed of three types of firms: (1) firms

that specialize solely in REN innovation (REN firms), (2) firms that specialize solely in FF

innovation (FF firms), and (3) firms that engage in both types of innovation (mixed firms) over

the observed period.7 Table 1 presents a number of descriptive statistics regarding the relative

importance of these three firm types in our sample, as well as their share of total innovation.

The majority of firms in our sample are FF firms (62%), whereas mixed firms are the clear

minority (5%). However, mixed firms’ patent counts in the sample are highly disproportional.

Overall, they are responsible for 37% of all patents. Splitting this out further between REN

and FF innovation, mixed firms capture 24% of the former and 40% of the latter. This implies

that mixed firms are much larger in terms of innovation, but as we will see below, also in other

7We do not have information on firms’ actual market entry and exist but instead we focus on the patterns
of firms’ technological entry and exit across energy technologies. A firm is defined as active if it has entered
REN or FF innovation and not exited yet. There are several concerns with our definition of REN, FF and mixed
firms. Our first concern is that some of our specialized firms may develop into mixed firms in the post-sample
period. That is, mixed firms might typically start innovating in one area (REN or FF) before venturing into
the other and we could mistakenly classify young firms as specialized. However, Noailly and Smeets (2015) show
that on average, initial REN and FF innovations in mixed firms tend to be clustered together in time. As such,
we are not overly worried that our classification of specialized and mixed firms is driven by the sample period.
An additional concern regarding our distinction between specialized and mixed firms is that the former might be
subsidiaries of a larger (multinational) corporate network, and as such are eventually part of a mixed firm after
all. Using the ownership relations provided in Orbis, we examined this possibility. We extracted information on
the Global Ultimate Owner (GUO) of firms using information on the total percentage of ownership, and assign
a GUO dummy to firms that are owned by another firm with a direct percentage higher than 50%. We found
that only 10% of specialized REN firms are part of a larger corporate network that also incorporates specialized
FF subsidiaries. For specialized FF firms this percentage is only 12%.
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Table 1: Innovation by firm type

Firms (N) Firms (%) REN pats (N) REN pats (%) FF pats (N) FF pats (%)

REN firms 1,776 33 3,524 76 - -
FF firms 3,392 62 - - 10,031 60
Mixed firms 265 5 1,108 24 6,823 40
Total 5,433 100 4,633 100 16,854 100

respects than specialized firms.

Figure 3 tracks the firm-dynamics in our sample over the period 1980-2009. Three aspects

are notable. First, the increase in the active number of REN firms closely tracks the development

of REN patents in Figure 2. This suggests that the increase in REN patents after the mid-1990s

is strongly driven by the extensive margin (i.e. new firms patenting) rather than the intensive

margin (i.e. existing firms patenting more). Although REN specialized firm are small and

innovate only occasionally, the fact that many new specialized firms have become active REN

innovation (‘innovation entry’) in the last fifteen years is the main cause of the surge in REN

patents since the mid-1990s. Second, the trend in firm dynamics of firms specialized in FF

innovation (FF firms) also mirrors the trend in their patenting behavior, although the absolute

numbers are slightly more different, suggesting that the intensive margin is a relatively more

important driver of patenting. Finally, the number of mixed firms has remained stable over

time. As shown in Table 1 they are much bigger and more persistent innovators than any of

the two types of specialized firms.
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Figure 3: Active firm dynamics (3-year moving averages)

Balance sheets’ data Using the financial database of Orbis, we have access to data on firms’

(consolidated) balance sheets and income statements. We match our set of firms with patents

in REN and FF technologies with the financial database of Orbis. Unfortunately, our sample

of firms is reduced after the matching as: 1) not all firms can be found back in the financial

database 2) data availability is severely limited before 1995. We conduct a series of consistency

checks as in Kalemli-Ozcan et al. (2015) recommended when working with financial variables

in Orbis (see Appendix) and we trim the 1% tails of all regression variables. We are left with a

sample of 1,300 firms (about 400 REN firms, 800 FF firms and 90 mixed firms) over the 1995-

2009 period for which we can exploit balance sheets data. We consider the following indicators

of financing sources:

• Cash flow: computed as total cash flow (including depreciation), divided by the end-of-

last-period stock of total assets.

• Long-term debt: computed as the annual change in total long-term debt, divided by the

end-of-last-period stock of total assets.

• Stock issues: computed as the annual change in outstanding issued share capital, divided

by the end-of-last-period stock of total assets.
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All variables are measured in 100,000 USD, using the exchange rate data from the Interna-

tional Energy Agency to convert the financial variables into US dollars. We further include a

number of firm-level control variables also borrowed from the financial database of Orbis and

include (net) sales8, the number of employees and the age of the firm.

In addition, we also include a control for the change in firm-level stocks of cash (and cash

equivalents). This variable aims to capture so-called ‘R&D smoothing’ (Brown and Petersen,

2011). As firms face high R&D adjustment costs, whenever they need to reduce R&D due to

financing constraints, they would need to fire R&D workers with a lot of intrinsic knowledge,

which has high (opportunity) costs. As a result, firms have a tendency to smooth R&D invest-

ment over time, which they typically do using cash holdings. In particular, during downturns

such stocks are depleted to maintain a basis level of R&D, whereas in upswings they are replen-

ished from excess cash flow. As a result, failing to control for the change in cash stocks may

lead us to underestimate the relationship between innovation and financial constraints.

Table 2 presents summary statistics of financial variables for the different types of firms.

The bottom part of the table confirms what we already observed in the previous subsection:

both specialized REN and FF firms are significantly smaller in terms of their patents counts

than mixed firms. In addition, REN firms tend to be younger on average than FF firms, and

both types of specialized firms are significantly younger than mixed firms. On average, REN

firms have a smaller number of employees than FF firms but the difference is not significant,

while both types of firms are significantly smaller in terms of employees than mixed firms.

The top part of the table considers a number of financial variables. We can observe that

mean stock issues to assets ratios (Stk) and mean debt to assets ratios (Dbt) are always smaller

than the mean cash flow ratios (CF), showing the importance of cash as a source of funding.

Median values of debt and stock issues are close to zero. The fact that stock issues do not

appear as a very large source of funding could be due to the fact that we look at European

firms, as the literature which is mostly focused on American firms generally finds higher levels

of equity finance. Average cash holdings ratios (Cash) are also large showing that firms have

some important stocks of liquidity to be able to smooth R&D during transitory shocks.

Looking at differences across firms, we find no significant difference in terms of cash flows

or cash holdings between specialized and mixed firms. Instead, average stock issues ratios for

8Sales are computed as the ratio of net sales to end-of-last period total assets.
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Table 2: Summary Statistics

REN firms FF firms Mixed firms
Mean Std. Dev Median Mean Std. Dev Median Mean Std. Dev Median

CFt−1 0.135 0.448 0.096 0.129 1.056 0.085 0.146 0.448 0.096
Dbtt−1 0.045b 0.268 0.002 0.020 0.180 0.000 0.098 0.268 0.002
Stkt−1 0.024a 0.079 0.004 0.021 0.100 0.004 0.015 0.079 0.004
Casht−1 0.160 0.280 0.076 0.148 0.532 0.064 0.132 0.336 0.056
∆Casht−1 0.048 0.213 0.008 0.033 0.512 0.003 0.052 0.213 0.008
Salest−1 2.091b 2.610 1.592 1.669 2.936 1.369 2.006 7.172 1.110
Age 14a,b 26 6 23a 32 13 39 39 31
Employees 1607a 15779 60 2071a 10060 116 20022 55604 1301
REN patents 0.2a 0.6 0.1 - - - 0.3 0.6 0.1
FF patents - - - 0.2a 0.4 0.1 1.2 0 0
All patents 1.8a,b 8.4 0.2 2.8a 17.9 0.3 51.8 8.4 0.2
a indicates significant difference with Mixed firms, b indicates significant difference (below 10%) with FF firms. All
balance sheets data (except age and number of employees) are scaled by beginning of the year ratios to total assets.
Number of observations: REN firms (N=403), FF firms (N=813), Mixed firms (N=90).

REN firms are significantly larger than for mixed firms, while there is no significant difference

in terms of stock issues between REN and FF firms. Stock issues are used primarily in the early

stage of the firm’s life cycle, so the relative importance of stock issues for REN firms could be

explained by the fact that these firms are less mature. Finally, mixed firms show the highest

average levels of debt-to-assets-ratio, which is significantly larger than for REN firms. Overall,

there are mostly no significant differences in terms of funding sources between FF and mixed

firms.

Other control variables Finally, we also consider variables that aim to capture changes

in the macro-economic environment of the firm in particular with respect to the market and

policy environment affecting REN and FF technologies in Europe over the last decades. These

variables are included as additional controls in our regressions. As our focus is on interpreting

the impact of financial variables, we refer to Noailly and Smeets (2015) for a more extensive

discussion of how these other control variables affect REN and FF innovation. Table 6 in the

Appendix provides specific definitions of all these variables and their data sources.

Energy prices: we extract data from the Energy Prices and Taxes database of the Interna-

tional Energy Agency on country-level prices of the different fossil-fuel energy sources, namely:
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oil, gas and coal.9 To make FF prices firm-specific, we weight FF prices according to the firm’s

distribution of patent filings across countries using information on patent families as in Noailly

and Smeets (2015) and Aghion et al. (2016). Since energy prices include taxes, this variable

can proxy for carbon pricing policies.

Market size: we extract data from the Energy Statistics database from the IEA on electricity

output from REN and FF sources per country in total number of gigawatt hours generated by

power plants. For FF energy, we use data on electricity output in oil, gas and coal, while for

REN energy we have access to disaggregated data on electricity output from solar, wind, hydro,

marine, geothermal, biomass and waste energy. Market size variables also capture demand-pull

policies, such as feed-in tariffs, put in place in specific countries. We compute firm-specific

market size by using designation country weights as well as technology weights in each firm’s

patent portfolio (see Appendix). Market size variables are likely to capture demand-pull policies

(e.g. guaranteed tariffs, investment and production tax credits) that aim to increase the market

for renewables.

3.2 Empirical strategy

Rate of innovation In order to investigate the impact of the various financial constraints

on the patenting activity of the firms in our sample, we follow the literature on the corporate

financing of R&D (Brown and Petersen, 2009, 2011; Brown et al., 2012) and estimate the

relationship between innovative activities (here measured as patents) and internal and external

financing flows as follows:

Pict = β0 + β1CFit−1 + β2DBit−1 + β3STKit−1 + β4∆CashHoldit−1 +Xict + νc + τt + ϵict (1)

where subscripts i, c, and t denote firm, country, and year; P captures (REN or FF10)

patent counts; CF are cash flows; DB is long-term debt; ∆CashHold is the growth in cash

holdings; X is a vector of control variables (including firms’ ratio of sales to total assets, firm’s

age and number of employees); ν and τ capture unobserved country, and time heterogeneity,

9These are prices paid at the power plant for electricity generation, i.e. prices paid by electricity facilities for
a certain type of fuel (including taxes).

10We do not have enough observations to provide a more refined analysis per specific REN - e.g. solar, wind,
etc - or FF technology type.
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respectively; and ϵ is an IID error term. The theoretical prediction is that financially constrained

firms should exhibit a positive coefficient on cash flow and a negative coefficient on cash holdings

growth, since a reduction in cash holdings releases cash for innovation activities.

As discussed earlier, all financial variables are normalized by end-of-previous-period total

asset stocks. Lagged realizations of the financial variables are included to allow for dynamic

adjustments of innovation to cash constraints. Patenting at time t corresponds to the application

year of the patent, which is the year most closely related to the date of invention (rather than

the granting date).

Using the absolute patent count as the dependent variable, we use negative binomial regres-

sion models:

E(Pict|Xict, θi, νc, τt) = λict

s.t. λict = exp(Ωict)

(2)

where Ωict denotes the model in (1). As is well known, compared to the Poisson model, the

negative binomial model does not impose equidispersion (i.e. the equivalence of the conditional

mean and variance). In robustness analysis, we will also consider the Poisson model.

Identification As noted by Brown and Petersen (2009), one concern may be that all financial

variables, including stocks, long-term debt, cash flows and cash holdings may be endogenous to

innovation activities.11 Such endogeneity could come from several factors. First, although we

capture unobserved country and time heterogeneity that may affect patenting activities by the

inclusion of country and year dummies, there may be time-varying factors (for example, a change

in a country’s R&D policy) that boost patenting and also triggers more financial resources for

firms. Second, our estimation could also be affected by reverse causality between financing

variables and patenting: firms could use patents as a signal to attract external funding. Finally,

patents and financing could be jointly determined due to unobserved firm’s heterogeneity: cash-

rich firms may be more likely to patent as this is a costly process, or some firms may be more

able to attract funding than others. All these factors could imply that financial variables are

correlated with the error term of the regression and yield inconsistent estimates.

11Brown et al (2009) use lagged financial variables as instruments when estimating a GMM for dynamic panel
data.
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Our dataset presents several limitations to address these identification issues. First, for

specialized firms, our sample contains only a few years per firm as these firms only innovate

occasionally. Hence, we are left with insufficient time variance to include firms’ fixed effects.

Instead, we will rely on the host of firm-level variables to capture the majority of cross-firm

heterogeneity. We correct for age, level of employment, sales and past innovation activities.

Although there might be other unobserved firm-level variables that are correlated with both

financing sources and patenting, we have no reason to believe that the endogeneity bias between

patenting and our financial variables may be differently distributed across REN or FF firms.

Second, for mixed firms, although we usually have longer time series, we are limited by the

relatively small size of the sample of mixed firms (N=90). For the case of mixed firms, we can

however introduce additional firm’s fixed effects by using the pre-sample estimator of Blundell

et al. (2002).12

Still, due to the limited degrees of freedom, we cannot perform any non-linear instrumental

variable estimation for patenting activities. We then test for endogeneity of the right-hand side

variables. We regress each lagged financial variable on its own (second) lags and other exogenous

variables. Residuals of all these first stages regression are then introduced afterwards in equation

(2) and both a Wald test and a likelihood-ratio test for joint significance of all residuals are

implemented to provide a diagnosis of endogeneity. The null hypothesis of joint significance is

rejected in all our models. Nonetheless, in our baseline we report a double set of estimates for

each specification: a negative binomial on first lagged values of financial variables, completed

by another one relying on the mean of second and third lagged values of financial variables.13

Innovation entry Along our analysis, we also aim to estimate the impact of financial factors

on the extensive margin of innovation, i.e. innovation entry, as Figure 3 showed that the rise in

REN patenting in recent years was mainly caused by the entry of specialized REN firms. We can

expect that small firms specialized in REN face important financial constraints at the innovation

entry stage, i.e. before their first innovation (when they cannot use patents as collateral for

instance). In this case, the decision to enter innovation should be particularly sensitive to a

shock in cash flows. Hence, in our empirical strategy, we will conduct additional estimations in

12Firms’ fixed effects for mixed firms are captured by the firm’s average innovation count in the presample
period (1950-1994) in all technologies (i.e.,not only patents in REN and FF technologies).

13We take the mean of both periods, mainly to avoid dropping too many observations.
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which we make a distinction between the extensive margin of innovation (i.e. a firm’s decision

to enter a specific type of innovation) and the intensive margin of innovation (conditional on

positive entry decision, firms make a decision regarding how much to innovate). In the data,

these two different processes (intensive vs. extensive margins) can be reflected into a firm’s

zero patent counts. First, there are structural (excess) zeros which stems from the fact that

the firm has not found it profitable to undertake R&D (i.e. to enter the innovation market).

Second, the standard zeros are the realization of a Poisson process and reflect the fact that

after entry, innovation has not been successful that year (as innovation is an uncertain process).

To capture these two margins, we will consider additional specifications, namely zero-inflated

Poisson models, in which in a first step a logit distribution first determines the extensive margin

decision, i.e. the likelihood of having a zero outcome (i.e. no innovation entry) for the count

variable, estimated as:

Pr(Pict = 0) = ∆(νict) =
eict

1 + eict
(3)

Where ∆ denotes the logistic distribution function and ict = log(λict) as in (2). Note that

the interpretation of the coefficients is based on the likelihood of (excess) zero patents (i.e. no

entry). Then, a second stage Poisson distribution governs the actual realization of the outcome.

Hence, the intensive margin decision is given by a log-linear Poisson model as in (2). We expect

financially constrained firms to exhibit a negative coefficient on cash flows - to be interpreted

as a positive impact on the likelihood of innovation entry in the inflation equation.

4 Results

4.1 Baseline

In Table 3, we present the baseline results of estimating equation (1) by negative binomial

models for the sample of specialized REN (columns (1) and (2)) and FF firms (columns (3) and

(4)). All models include full sets of country and year dummies (not reported). The dependent

variable in every column is the number of patents (either REN or FF) per firm i and year t.

Regarding the impact of financial factors, we expect to find a stronger link between the

financial variables and R&D in the groups of firms most likely to be financially constrained. For
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the sample of firms that specialize in REN innovation only, we find that the coefficient for lagged

cash flows is positive and significant in both column (1) (at 5% levels) and column (2) (at 10%

levels, where we include the mean of second and third lags for financial variables). Instead, cash

flow coefficients are positive but insignificant for FF firms (in columns (3) and (4)). This result

confirms our hypothesis that REN firms in particular are financially constrained. FF firms,

although younger and smaller than mixed firms, do not appear to be financially constrained.

Regarding long-term debt, the evidence is mixed and inconclusive. For REN firms, the coef-

ficient for long-term debt is positive significant in column (2) but not in column (1). Somewhat

puzzling, we find a significant negative coefficient of long-term debt on patenting by FF firms

in column (3)14, but not in column (4). We do not find any positive significant impact of stock

issues in the various samples of firms. Finally, the lagged coefficient on cash holdings growth

are negative as expected in most specifications, but not significant. Cash holdings growth was

expected to be negatively associated with R&D as reductions in cash holdings at the firm level

free liquidity for R&D smoothing.

Regarding firm-levels controls, we find no impact of the sales ratio on patenting activities.

Firm’s age tend to have a negative impact on firms’ innovation and larger firms, as measured by

the number of employees, tend to patent more. Finally, the impact of firm’s knowledge stocks

and other macroeconomic variables is in line with previous results found in Noailly and Smeets

(2015): 1) there is evidence for within-firm path-dependency as firm’s specific past knowledge

stock in REN (FF) technology firms, 2) REN (FF) market size has a positive (negative) impact

on REN innovation, 3) higher FF prices can either encourage or discourage both types of

innovation.15

In Table 4, we present the estimation results for mixed firms. Due to the limited number of

firms, we face convergence issues when taking second and third lags of financial variables as this

reduces our sample of firms so we only report the results for the first lags variables. In columns

(1) and (2), we report the same specifications as columns (1) and (2) for specialized firms in

Table 3. In columns (3) and (4), we control for additional firm’s fixed effects by including a

14This would imply that FF firms might rely on long-term debt financing for other activities, such as investment
in physical capital, which might crowd out R&D.

15Higher FF prices might encourage firms to innovate more in FF technologies (to develop more efficient and
cheaper technologies) but could also encourage firms to develop alternative technologies such as REN technologies.
Note that the negative impact of FF prices on FF innovation in column (3) is not robust to other specifications,
such as Poisson model (see Table 7).
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Table 3: Baseline Specialized firms- Negative Binomial Results

REN firms REN firms FF firms FF firms
VARIABLES REN patents REN patents FF patents FF patents

(1) (2) (3) (4)

CFt−1 1.079**a 0.059
(0.546) (0.164)

CF(t−2,t−3) 1.139* 0.124

(0.655) (0.409)
Dbtt−1 -0.198a -0.762**

(0.177) (0.296)
Dbt(t−2,t−3) 1.188* 0.746

(0.711) (0.573)
Stkt−1 -1.538 0.173

(1.051) (0.552)
Stk(t−2,t−3) 0.073 -0.542

(1.993) (0.908)
∆Cashholdingst−1 -0.318 0.008

(0.222) (0.258)
∆Cashholdings(t−2,t−3) -0.723 -0.094

(0.967) (0.731)
Salest−1 0.029 0.072 -0.058 -0.023

(0.043) (0.050) (0.054) (0.054)
Log(Age)t -0.312*** -0.306*** -0.155*** -0.191***

(0.089) (0.087) (0.056) (0.062)
Log(Employees)t 0.084** 0.103*** 0.094*** 0.100***

(0.035) (0.037) (0.025) (0.027)
Log(REN knowledge stock)t−1 0.606*** 0.625***

(0.153) (0.191)
Log(FF knowledge stock)t−1 0.871*** 0.844***

(0.075) (0.077)
Log (FF prices)t−1 -0.285 -0.419 -0.299* -0.124

(0.277) (0.312) (0.176) (0.166)
Log (REN market size)t−1 0.050** 0.024 0.013 0.020

(0.025) (0.024) (0.048) (0.041)
Log (FF market size)t−1 -0.023 0.033 0.060 0.074

(0.043) (0.052) (0.052) (0.056)

Year FEb Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 2,093 1,933 4,811 4,455
Number of firms 403 369 813 780
Log Likelihood -1027 -928 -2436 -2251
a indicates a significant difference between the REN and FF model at p ≤ 0.1 for financial variables
(CF, Dbt, Stk, ∆Cashholdings). We conduct Wald tests to establish statistically significant differences
in coefficients between the two models in a Seemingly Unrelated Regressions(SUR) framework. b Due to
convergence issues based on a small number of observations, in column (4) we use 2-years dummies
rather than individual year dummies. * p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01. Robust standard errors are
clustered at the firm level. Fossil fuel price and market size variables are constructed by using
firm-specific weights reflecting the firms’ patent portfolio and designation countries as in Noailly and
Smeets (2015). The dependent variable in every column is the number of patents per firm i and year t.
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variable that captures a firms’ capacity to innovate, namely the number of patents filed by

the firm over the presample period 1950-1994 (see ?). In column (4), we find evidence that

the presample number of patents only significantly affects the number of FF patents by mixed

firms. Other coefficients remain mostly unaffected by adding firms’ fixed effects. Overall and as

expected, for mixed firms the fact that none of the financial factors are statistically significant

in all models is consistent with our hypothesis of no financial constraints for these large mature

firms predominantly innovating in FF technologies. Cash holdings growth is only significant in

column (1) which considers specifically REN patenting activities by mixed firms. This indicates

that mixed firms may rely on cash holdings to smooth REN R&D, i.e. use their stock of liquidity

as a buffer to finance their REN activities, although the coefficient is not significant anymore

in column (2) when including firm’s fixed effects. Finally, in the sample of mixed firms, firm’s

size has no significant impact on mixed firms’s patenting activities. Older firms tend to patent

less, but this is only significant for FF patents.

All our results are robust to a Poisson estimation as shown in Table 7 in Appendix.

4.2 Innovation entry

In a second step, we estimate equations (2) and (3) using a zero-inflated Poisson model. The

results for specialized firms are presented in Table 5.16 The top panel of the table presents the

coefficient estimates of the Poisson model for the number of patents (level equation, intensive

margin), while the bottom panel presents the coefficient estimates of the logit model in the

inflation equation for the likelihood of observing (excess) zero patent counts. To save on space,

we only report the results for the balance sheet and income statement variables. We interpret

the results of the inflation equation as the impact on the extensive margin of innovation, i.e. the

likelihood of participating in the innovation market (innovation ’entry’). A negative impact on

the likelihood of (excess) zero patents is thus interpreted as a positive impact on the likelihood

to enter into REN or FF innovation. The Vuong test statistic reported at the bottom of Table 5

suggests that the zero-inflated Poisson model performs better than the standard Poisson model

for specialized firms.

We investigate the positive impact of cash flow on REN innovation and in particular on

16Due to a limited number of observations for mixed firms (N=90), we do not report the results for mixed
firms as the zero-inflated models face convergence issues in this specific sample.
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Table 4: Baseline Mixed firms - Negative Binomial Results

Mixed firms Mixed firms Mixed firms Mixed firms
REN patents REN patents FF patents FF patents

VARIABLES (1) (2) (3) (4)

CF t−1 0.785 0.768 0.324 0.218
(0.877) (0.903) (0.784) (0.782)

Dbtt−1 -0.247 -0.199 0.014 0.163
(0.700) (0.557) (0.360) (0.384)

Stkt−1 -7.228 -5.226 -0.441 -0.630
(5.888) (4.984) (2.616) (2.679)

∆Cashholdingst−1 -2.878* -2.258 -0.012 -0.028
(1.498) (1.424) (0.373) (0.382)

Salest−1 0.100 0.104 -0.181 -0.157
(0.141) (0.128) (0.182) (0.171)

Log(Age)t 0.234 0.211 -0.235** -0.219*
(0.154) (0.160) (0.118) (0.116)

Log (Employees)t -0.045 -0.045 -0.061 -0.060
(0.052) (0.048) (0.046) (0.046)

Log(REN knowledge stock)t−1 0.555*** 0.528*** -0.268* -0.226
(0.171) (0.188) (0.152) (0.148)

Log(FF knowledge stock)t−1 0.652*** 0.644*** 1.180*** 1.139***
(0.149) (0.151) (0.103) (0.102)

Log (FF prices)t−1 -2.364** -1.984** 0.466 0.739
(1.055) (0.832) (0.640) (0.653)

Log (REN market size)t−1 0.130** 0.140** 0.045 0.043
(0.056) (0.054) (0.036) (0.037)

Log (FF market size)t−1 -0.438*** -0.432*** 0.017 0.034
(0.073) (0.074) (0.067) (0.063)

Presample (Firm FE) -0.372 -1.654***
(0.391) (0.231)

Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 536 536 536 536
Number of firms 90 90 90 90
Log Likelihood -291 -300 -481 -477
* p ≤ 0.1, ** p ≤ 0.05, *** p ≤ 0.01. Robust standard errors are clustered at the firm level. Fossil fuel
price and market size variables are constructed by using firm-specific weights reflecting the firms’ patent
portfolio and designation countries as in Noailly and Smeets (2015). The dependent variable in every
column is the number of patents per firm i and year t.
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entry of firms into REN innovation. The inflation equation at the bottom panel of column (1)

shows a positive and significant impact of cash flows ratios on the likelihood of REN innovation

(recall that the inflation equation estimates the probability of zero innovation, so that a negative

coefficient implies an increased likelihood of innovation). Hence, this suggests that REN firms

are particularly constrained in their decisions to enter the REN innovation market. Instead,

we do not find any impact of cash flows the innovation entry decisions of FF firms. Looking

at the intensive margin in the top panel of Table 5, we do not find any more a positive impact

of cash flows on the rate of innovation of REN specialized firms, which suggests that once

they have entered and filed their initial patents, REN firms do not appear to be financially

constrained. The inflation equation in column (2) also shows that a higher long-term debt

is negatively associated with innovation entry of FF firms, although the coefficient is only

marginally coefficient. This is in line with the results in Table 3: FF firms use long-term debt

to finance other activities than innovation.

Results on the extensive margin of innovation confirm thus what we had previously estab-

lished, namely that there is evidence that REN firms are financially constrained, while this is

not the case for FF firms. The results highlight that since specialized firms tend to innovate only

occasionally and then exit the innovation scene rather quickly the entry stage is particularly

problematic.
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Table 5: Zero-inflated Poisson estimations

Zero-inflated Poisson (1) (2)
REN firms FF firms

VARIABLES REN patents FF patents

Intensive margin
Level equation

CFt−1 0.150 0.157
(0.129) (0.588)

Dbtt−1 0.209 0.351
(0.527) (0.571)

Stkt−1 -5.764 -0.436
(3.519) (0.689)

Cashholdingst−1 -0.140 -0.598
(0.588) (0.548)

Salest−1 0.016 -0.341***
(0.075) (0.106)

Log(Age)t -0.452*** -0.027
(0.122) (0.086)

Log (Employees)t 0.156*** 0.082**
(0.053) (0.039)

Extensive margin
Inflation equation

CFt−1 -1.322** 0.012
(0.672) (0.403)

Dbtt−1 0.614 2.031*
(0.568) (1.095)

Stkt−1 -5.509 -2.115
(6.381) (2.117)

∆ Cashholdingst−1 -0.113 -1.424
(0.752) (1.413)

Salest−1 -0.085 -0.481***
(0.136) (0.185)

Log(Age)t -0.248 0.229**
(0.183) (0.116)

Log(Employees)t 0.064 -0.024
(0.072) (0.053)

Additional controls Yes Yes
Year FE Yes Yes
Country FE Yes Yes
Observations 2,093 4,811
Number of firms 403 813
Log Likelihood -1048 -2465
Vuong test 3.60*** 5.60***
* p ≤ 0.1, **p ≤ 0.05, ***p ≤ 0.01. Robust standard errors
are clustered at the firm level. Fossil fuel price and market
size variables are constructed by using firm-specific weights
reflecting the firms’ patent portfolio and designation
countries as in Noailly and Smeets (2015). The dependent
variable in every column is the number of patents per firm
i and year t. Both level and inflation equations include
additional controls for Log(patent stocks), FF prices, REN
and FF market sizes as in Table 3.
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5 Conclusions

This paper aimed to test the central hypothesis that firms specializing in REN innovation are

more financially constrained than either FF or mixed firms. Compared to FF innovation, REN

innovation is more uncertain and risky for investors, due to the lower maturity of the technologies

and the larger reliance on (uncertain) policy support. Our descriptive analysis of firms’ balance

sheet data also confirms that the bulk of REN innovation tends to be undertaken by smaller

and younger firms than firms conducting FF innovation. Using negative binomial and Poisson

estimation techniques, we estimate the sensitivity of firms’ patenting activities to three financing

factors, namely cash flows, long-term debt and stock issues, controlling for R&D smoothing as

well as other firms’ and market characteristics. We find evidence that financing constraints

matter for firms specialized in REN innovation but not for small FF firms or large mixed firms.

Results from a two-stage zero-inflated Poisson models confirm that financing constraints are

particularly relevant for the firm’s decision to start innovating (’innovation entry’).

Our results have important implications for policymaking. First, the results emphasize

that small innovative newcomers in the field of renewable energy are particularly vulnerable to

financing constraints, not solely because they are younger and less mature than other established

firms, but mainly because they focus on new clean technologies that are still perceived as more

risky by investors than the incumbent technologies based on fossil-fuels electricity generation.

Government and policymakers should thus pay particular attention to ease financing constraints

of start-up companies into renewable energy. Some options for policymaking include for instance

providing venture capital for REN start-up firms or providing specific R&D subsidies for small

innovating firms in renewable energy. Our results highlight thus the need for sector specific

subsidies (rather than generic policies for all firms) and for the need to configure investment

policies to steer investments towards clean technologies, for instance in the form of specific

capital grants, venture and equity funds or low-interest loans for starters in clean energy. Public

regulators can also more actively use the option to lend directly to the renewable energy sector

via public investment banks on terms more favourable than those of the market.

Finally, while this work has presented a first empirical analysis of the role of financing

constraints on the direction of innovation in the electricity generation sector, future work could

take advantage of larger datasets to produce a more refined analysis, for instance to investigate
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variation across specific REN technologies. The impact of the financial crisis of 2008 on firms’

financing constraints for REN vs. FF innovation, and the impact of government policies that

followed the crisis to spur innovation in clean technologies, is also left for future research.
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Appendix

5.1 Variables definitions

For a detailed description of the variable construction we refer to Noailly and Smeets (2015).

Table 6: Construction and sources of variables

Variable Construction Data source

Renewable (REN)
patents

Count of patents in wind, solar, hydro, marine,
biomass, geothermal, and waste energy tech-
nologies

Orbis-EPO
(PATSTAT)

Fossil fuel (FF) patents Count of patents in fuel gases by carbureting
air, steam engine plants, gas turbine plants, hot-
gas or combustion-product positive displace-
ment engine, steam generation, combustion ap-
paratus, furnaces, and improved compressed-
ignition engines technologies

Orbis-EPO
(PATSTAT)

Stock issues Capitalt−Capitalt−1

TotalAssetst−1
Orbis

Long-term debt LongTermDebtt−LongTermDebtt−1

TotalAssetst−1
Orbis

Cash flow CashF lowt
TotalAssetst−1

Orbis

Sales Salest
TotalAssetst−1

Orbis

∆CashHolding CashEquivalentst−CashEquivalentst−1

TotalAssetst−1
Orbis

Log employees Log(Employees+1) Orbis

Log age Log(Year-Date of incorporation+ 1) Orbis

Publicly listed Publicly listed company Orbis

Fossil fuel (FF) price see below - Noailly and Smeets (2015) IEA, PATSTAT,
INPADOC

REN and FF market
size

see below - Noailly and Smeets (2015) IEA, PATSTAT,
INPADOC

REN and FF knowledge
stock

(1− δ)Kit−1 + Pit Orbis, PATSTAT

The fossil-fuel price faced by firm i at time t is computed as:

pit =
∑
c

wic × pct

s.t. pct =
∑

f=oil,coal,gas

Mfc

MFFc
× pfct

(4)

where pct is the sum of (log) fossil-fuel prices pfct (oil, coal and gas) in country c at time t,

weighted by the respective average market shares of each fossil fuel type in that country. This

price is then multiplied by the weight wic =
Pit×MFFic∑

PitMFFic
, where Pic is the total number of patents
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filed by firm i in designation country c and MFFc is the country’s FF average market size.17

As with prices in (4), we construct fixed firm-specific designation country weights wik to

compute firm-level FF and REN market sizes. However, we now also introduce fixed firm-

specific technology weights wis to account for the fact that e.g. a firm innovating mainly in

solar power will be mostly concerned with the market size for solar energy. Hence we compute:

Mit =
∑
c

∑
s

wiscMsct (5)

with wisc =
Pisc∑

s

∑
c Pisc

, where Pisc is the number of patents of firm i in technology s in country

c and Msct is the market size of technology s in country c.

To compute FF technology weights wisc we use a correspondence between the FF technolog-

ical areas and oil, gas or coal fuels as provided in Lanzi et al. (2011). For instance, technologies

in the field of production of fuel gases by carburetting air are assigned to the market size of

electricity output from coal. For those FF innovations without such a correspondence, we assign

the weighted average market size of all three fuel sources. Finally, we also compute firm-specific

REN market sizes for firms innovating only in FF technologies. To do so, we assign country-level

market size averaged across all REN technologies, also using the relevant country-weights (wik).

We proceed in a similar manner to assign FF market sizes to firms that innovate only in REN

technologies.

Knowledge stocks are computed using the perpetual inventory method as KSit = (1 −

δ)KSt−1 + Pit, where δ is the depreciation rate and Pt is the total number of patents filed by

firm i at time t.

5.2 Methodology and data cleaning of the Orbis dataset

To construct the firm-level financial variables, we follow the following steps for data cleaning as

in Kalemli-Ozcan et al. (2015).

1. We check the consistency of accounting identities (ratio should not be larger than 10

• fixedassets-tangiblefixedassets-intangiblefixedassets-otherfixedassets)/fixedassets

17All our weights are fixed, i.e. we compute total patent counts Pic and average market sizes MFFc over the
whole sample period. If changes in FF prices affect the country mix of the patent portfolio or the size of the FF
market, not fixing the weights might feed back into the prices, causing potential endogeneity.
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• totalassets - fixedassets-currentassets)/totalassets

• noncurrentliabilities - longtermdebt - othernoncurrentliabilities)/noncurrentliabilities

• currentliabilities - loans - creditors - othercurrentliabilities)/currentliabilities

• totalsharehfundsliab-loans)/totalsharehfundsliab

• totalsharehfundsliab-longtermdebt)/totalsharehfundsliab

2. We drop the entire company (all years) if total assets is negative in any year.

3. We drop the entire company (all years) if sales is negative in any year.

4. We drop the entire company (all years) if tangible fixed assets (such as buildings, machin-

ery, etc) is negative in any year

5. For some firms, there are some inconsistencies in the units of financial variables (as noted

by Kalemli-Ozcan on p.29). The moment of switch in units coincides with an unreason-

able” move of total assets, often clustered around the year 2000. To solve for this, we

focus on firms with total assets above 1 million USD.

6. We also winsorize all financial variables by trimming the data at 1

5.3 Robustness results
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Table 7: Robustness Poisson models

Poisson Estimation (1) (2) (3) (4)
REN firms FF firms Mixed firms Mixed firms

VARIABLES REN patents FF patents REN patents FF patents

CFt−1 0.283** 0.078 0.617 0.632
(0.124) (0.132) (0.877) (1.006)

Dbtt−1 -0.129 -0.747*** -0.236 -0.282
(0.145) (0.285) (0.699) (0.302)

Stkt−1 -1.215 0.382 -8.420 -7.910
(1.153) (0.538) (6.429) (6.038)

∆Cashholdingst−1 -0.204 0.017 -3.142* 0.654
(0.173) (0.213) (1.623) (0.429)

Salest−1 0.074* -0.076 0.086 -0.158
(0.041) (0.056) (0.148) (0.169)

Log(Age)t -0.366*** -0.174** 0.216 -0.293***
(0.124) (0.073) (0.157) (0.080)

Log(Employees)t 0.104*** 0.093*** -0.062 -0.045
(0.035) (0.027) (0.052) (0.038)

Log(REN knowledge stock)t−1 0.884*** 0.563*** 1.263***
(0.068) (0.187) (0.084)

Log(FF knowledge stock)t−1 0.907*** 0.666*** 0.566
(0.075) (0.155) (0.647)

Log(FF prices)t−1 -0.220 -0.222 -2.297** 0.046
(0.255) (0.186) (1.009) (0.036)

Log(REN market size)t−1 0.074* 0.028 0.131** -0.027
(0.038) (0.046) (0.059) (0.064)

Log(FF market size)t−1 -0.022 0.082 -0.425*** -0.280
(0.048) (0.061) (0.078) (0.160)

Constant -1.297 -2.529** 12.606*** -3.038
(1.866) (1.260) (4.587) (3.554)

Year FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Observations 2,093 4,811 536 536
Number of firms 403 813 90 90
Log Likelihood -1138 -2596 -294 -511
a Due to convergence issues based on a small number of observations, in column (4) we use 2-years
dummies rather than individual year dummies. b *p ≤ 0.1, **p ≤ 0.05, *** p ≤ 0.01. Robust standard
errors are clustered at the firm level. Fossil fuel price and market size variables are constructed by using
firm-specific weights reflecting the firms’ patent portfolio and designation countries as in Noailly and
Smeets (2015). The dependent variable in every column is the number of patents per firm i and year t.
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