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Abstract

We study how stochasticity in the evolution of agricultural productivity interacts with

economic and population growth, and the associated demand for food. We use a two-sector

Schumpeterian model of growth, in which a manufacturing sector produces the traditional

consumption good and an agricultural sector produces food to sustain contemporary pop-

ulation. In addition, sectors differ in that agriculture also demands land as an input, itself

treated as a scarce form of capital. In our model both population and sectoral technological

progress are endogenously determined, and key technological parameters of the model are

structurally estimated using 1960-2010 data on world GDP, population, cropland and tech-

nological progress. Introducing random shocks to the evolution of total factor productivity

in agriculture, we show that uncertainty optimally requires more land to be converted into

agricultural use as a hedge against production shortages, and that it significantly affects both

consumption and population trajectories.
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1 Introduction

Global population has grown from around three billion in 1960 to seven billion in 2010, and

over the same 50 years agricultural production has almost tripled, mostly on account of a sus-

tained increase in agricultural productivity (Alexandratos and Bruinsma, 2012). Given projected

growth in the population that will need to be fed – with global population expected to reach

10 billion before 2060 (Gerland et al., 2014) – further improvements to agricultural productiv-

ity will need to take place (Alston and Pardey, 2014). While these productivity improvements

give an important role to innovation and technology adoption in agriculture, uncertainty and

variability associated with agricultural output puts an increasing number of persons at risk of

insufficient food supply.

Given the importance of the evolution of agricultural productivity for global development,

in this paper our objective is to study how uncertainty about agricultural technology affects

optimal allocation of resources at the macroeconomic level. As we illustrate in Figure 1, yearly

growth of total factor productivity (TFP) in agriculture has been around one percent on average

over the period 1960 to 2010, but there is ample variation in yearly growth rates both across

regions and over time.1 Specifically, maximum and minimum TFP growth suggest very large

variability in the realization of productivity gains, with a range of -15 to +20 percent per year

across regions.

In addition to the inherent variability of agricultural productivity, the evolution of future

agricultural output may be affected by novel factors that have not been observed in the past

fifty years. For example, a major source of uncertainty is future climate change, whose impacts

on agriculture are difficult to evaluate. However, recent evidence suggests that agricultural

productivity could deteriorate significantly, globally on aggregate (see e.g. Nelson et al., 2014).

Another source of uncertainty stems from natural-resource and biological scarcities (e.g. Godfray

et al., 2010; Tilman et al., 2011). An example of such risk involves an evolutionary argument,

whereby the probability that pests and pathogens adapt to a given agricultural innovation in-

1 Data on TFP growth are derived from Fuglie and Rada (2015) and FAO (2015), using the growth accounting
methodology of Fuglie and Rada (2015), which takes into account a broad set of inputs and aggregates TFP
growth rates at the level of 27 macro regions. However, whereas Fuglie and Rada (2015) apply a Hodrick-
Prescott filter to smooth year-on-year output fluctuations before calculating TFP, our focus is the variability of
agricultural productivity, and TFP figures reported in Figure 1 are based on raw (unsmoothed) output data from
FAO (2015).
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Figure 1: Total factor productivity growth in agriculture, 1960–2010
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Notes: Plotted data on yearly TFP growth are derived from Fuglie and Rada (2015) and FAO (2015). Average
change in TFP measures yearly growth rate of TFP averaged (without weights) across 27 macro regions defined
in Fuglie and Rada (2015). Minimum and maximum yearly growth rates across regions are also reported. See
footnote 1 for more details on the reported data.

creases with time(e.g. Evans, 1993; Scheffer, 1997). This may render particular agricultural

technologies obsolete (such as making some classes of pesticide ineffective), and thus induce a

drop in productivity (Weitzman, 2000; Goeschl and Swanson, 2003).2

To study the socially optimal response to agricultural productivity shocks, we employ a

stochastic version of a quantitative two-sector endogenous growth model of the global econ-

omy first introduced in Lanz et al. (2016). This provides an integrated framework to study

the joint evolution of global population, sectoral technological progress, per-capita income, the

demand for food, and agricultural land expansion (from a finite reserve of unconverted land).

Specifically, the model distinguishes agriculture from other sectors in the economy (producing

a bundle of consumption goods) and treats both population and sectoral TFP as endogenous

stock variables. The level of population in the model derives from preferences over fertility by a

representative household (Barro and Becker, 1989), with fertility costs capturing two key com-

ponents. First, additional labor units demand food, and the level of per-capita food demand

is proportional to income, reflecting empirical evidence on diet changes as affluence rises (e.g.

Subramanian and Deaton, 1996; Thomas and Strauss, 1997). In the model, food is produced

2 As we discuss in Lanz et al. (2014), this sort of risk may be related to the scale of modern agriculture, although
in the present work we focus on a more general exogenous source of uncertainty.
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by the agricultural sector, so that the evolution of agricultural productivity may act as a con-

straint to the evolution of population. A second component of fertility costs is the time needed

to rear and educate children. Our model builds on the work of Galor and Weil (2000), and we

posit an increasing relationship between the level of technology in the economy and the cost

of population increments. In this context, technological progress raises the demand for human

capital and education requirements, capturing the well-documented complementarity between

technology and skills (Goldin and Katz, 1998).

Given the explicit representation of fertility decisions and the demand for food associated

with population and income growth, the model is well-suited to study the role of technology

as a driver of global economic development. In our model, technological progress in each sec-

tor is endogenous, and we use the Schumpeterian R&D model of Aghion and Howitt (1992),

in which TFP growth is a function of labor hired by R&D firms. Thus, on the one hand, tech-

nological progress in agriculture reduces the cost of producing food, and is a key driver of

agricultural yields (agricultural output per unit of area). In turn, agricultural technology im-

provements can alleviate Malthusian concerns associated with the finiteness of the land input.

On the other hand, economy-wide technological progress implies a quantity-quality trade-off

in fertility choices (through increasing education costs), and thus a slowdown of population

growth (as per Galor and Weil, 2000). Taken together, technological progress is central to the

development path generated by the model.

As discussed in detail in Lanz et al. (2016), we use simulation methods to structurally es-

timate key parameters of the model, minimizing the distance between observed and simulated

1960-2010 trajectories for world GDP, population, TFP growth and agricultural land area. The

estimated model closely replicates targeted data over the estimation period, and is also able to

replicate untargeted moments, such as the share of agriculture in world GDP and the growth

rate of agricultural yields.

In this paper, we introduce introduce uncertainty in the evolution of agricultural TFP from

2010 onwards. In the baseline, agricultural TFP growth starts at around one percent per year

in 2010 and declines thereafter. This implies that agricultural yields increase linearly, with a

growth rate of 1.2 percent per year in 2010, and reaches 0.9 percent per year in 2030.3 Given

3 Linear increase in agricultural yields is consistent with existing literature; see for example Alston et al. (2009)
and Godfray et al. (2010).
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the structure of productivity shocks we consider, there is a 73 percent probability that this base-

line situation prevails by 2030. If negative productivity shocks occur, and realized shocks are

permanent in the sense that they affect agricultural productivity in all subsequent periods, by

2030 there is a 24 percent probability that agricultural TFP is around 10 percent lower relative

to its baseline value, a 3 percent probability that it reduced by around 15 percent, and a small

(0.1 percent) probability that it is reduced by more than 20 percent.4

In the model, the socially optimal response to uncertain agricultural productivity shocks oc-

curs in a number of important dimensions. First, given the possibility of lower productivity in the

future, allocating more labor to R&D can speed up the pace of agricultural productivity growth.

Second, when a shock occurs, more primary factors can be allocated to agricultural production,

specifically labor, capital and land. Here, increasing agricultural land area involves a decision

to deplete a finite reserve base, so there is an intertemporal trade-off involved. Third, changes

in agricultural productivity affect the supply of food and thus population growth. In particular,

population will be negatively affected by depreciation of agricultural technology, so that shocks

will thus affect equilibrium trajectories over the long run. Finally, per-capita consumption is

also expected to decline, as more resources need to be allocated to the agricultural sector at the

expense of manufacturing production.

Our results indicate that variability in agricultural TFP induces a substantial reallocation of

resources relative to baseline trajectories. Specifically, the planner allocates more resources to

agricultural R&D, but we find that, once a negative shock has occurred, agricultural TFP does

not catch up with its baseline path. Thus in our framework it is too expensive for the planner

to simply compensate lost agricultural TFP with supplemental R&D expenditure. Rather the

planner expands use of other primary inputs to agriculture. But, since there is an opportunity

cost of labor and capital (which are also used for the production of the manufactured good),

the main response of the planner is to increase the area of agricultural land. In addition, as

technology shocks make food more expensive to produce, a second major implication is that

population declines relative to the baseline.

Our work is related to at least two streams of literature that consider interactions between

4 Note that our objective is not to carry out an assessment of some specific uncertain event that would affect agri-
cultural productivity. Instead, our contribution is to provide an internally consistent picture of how uncertainty
in the evolution of agricultural technology affects the socially optimal allocation of resources in a framework
with endogenous land conversion, population, and R&D based TFP growth.
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economic growth, food production and population development. First, our paper is related to

the seminal work of Galor and Weil (2000) and Jones (2001), who study the joint evolution of

economic growth and population over the long run, and to Hansen and Prescott (2002), Strulik

and Weisdorf (2008), Vollrath (2011) and Sharp et al. (2012), who also consider the role of land

and agriculture. In this context, Bretschger (2013) and Peretto and Valente (2015) consider the

related issue of natural resource scarcity, and Strulik and Weisdorf (2014) study quantitatively

the linkages between technology, agriculture and population. However, none of these growth

papers attempt to introduce uncertainty about future technological progress. Another important

difference is that key parameters of our quantitative model are structurally estimated, so that

our model closely replicates observed trajectories over the past fifty years.

Second, our work contributes to the growing literature that provides evidence on the impact

of future climate change on agriculture and food production. For example, the large-scale model

comparison exercise carried out under the AgMIP project (see notably Nelson and Shively, 2014,

and other papers in this volume) suggests that climate change is expected to reduce global yields

by 17 percent on average by 2050, although an adaptive, economic response would reduce this

negative impact to 11 percent (e.g. by switching crops). See the summary results reported in

Nelson et al. (2014). This is associated with an increase of crop area by 11 percent on average

relative to the baseline. Whereas models used to derived these results feature high-resolution

sectoral and regional representations, they treat the evolution of other drivers (such as the

demand for food and agricultural yields) as exogenous. Instead, our contribution considers the

globally aggregated evolution of population, per capita income, and technology as endogenous

outcomes, which allows us to study how these variables jointly respond to uncertainty about

future agricultural productivity growth.

Another paper that is close in spirit to our work is Cai et al. (2014), as they use a dynamic-

stochastic partial equilibrium model of global land use to study the risk of an irreversible re-

duction in agricultural productivity. They show that the risk increases the demand for cropland

globally by 2100, at the expense of valuable biodiversity and ecosystem services. Our work

shares the purpose of Cai et al. (2014), but is otherwise complementary: while their work con-
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siders more finely partitioned land uses,5 ours emphasizes the role of endogenous technological

progress through R&D activities, and also allows population to respond to changes in agricul-

tural productivity.

The remainder of the paper is organized as follows. Section 2 provides an overview of the

model, estimation procedure, and then describes how we introduce stochasticity in the outcomes

of agricultural R&D. Section 3 reports our results, and we provide a discussion in Section 4. We

close with some concluding comments in Section 5.

2 The model

This section first summarizes the key components of the growth model. Second, we present

the simulation-based structural estimation procedure. Third, we explain how we introduce

stochastic shocks to the evolution of agricultural productivity.6

2.1 The economy

2.1.1 Manufacturing production and agriculture

A manufacturing sector produces the traditional consumption bundle in one-sector models, with

aggregate output Yt,mn at time t given by:

Yt,mn = At,mnK
ϑ
t,mnL

1−ϑ
t,mn , (1)

where At,mn is TFP in manufacturing, Kt,mn is capital and Lt,mn is the workforce.7 The share of

capital is set to 0.3, which is consistent with Gollin (2002), for example.

Agricultural output Yt,ag is given by a flexible nested constant elasticity of substitution (CES)

5 More specifically, Cai et al. (2014) consider the allocation of land to commercially managed forest (with many
different stock variables capturing different forest vintages) and for biofuel crops. Forest products and energy
are consumed by households. Non-converted ‘natural’ land generates ecosystem services, which are also valued
by households.

6 As noted above, Lanz et al. (2016) provides a comprehensive motivation for the structure of the model, analytical
results on the evolution of population and land, discussion of the selection and estimation of the parameters, as
well as ensuing baseline projections from 2010 onwards. Extensive sensitivity analysis is also reported, showing
that the baseline projections are robust to a number of changes to the structure of the model, which comes from
the fact that we estimate the model over a relatively long horizon. The GAMS code for the model, replicating the
baseline runs reported here, is available from Bruno Lanz’s website.

7 Note that under the assumption that technology is Hicks-neutral, the Cobb-Douglas functional form is consistent
with long-term empirical evidence reported in Antràs (2004).
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function (see Kawagoe et al., 1986; Ashraf et al., 2008), in which the lower nest is Cobb-Douglas

in capital and labor, and the upper nest trades off the capital-labor composite with the land input

Xt:

Yt,ag = At,ag

[
(1− θX)

(
KθK
t,agL

1−θK
t,ag

)σ−1
σ

+ θXX
σ−1
σ

t

] σ
σ−1

, (2)

where σ determines substitution possibilities between the capital-labor composite and land. Fol-

lowing empirical evidence reported in Wilde (2013), representing long-term substitution possi-

bilities between land and other factors in agriculture, we set σ = 0.6. We further set the share

parameters θX = 0.25 and θK = 0.3 based on data from Hertel et al. (2012).

2.1.2 Innovations and technological progress

In the absence of productivity shocks, which are discussed in Section 2.3, the evolution of sec-

toral TFP is given by:

At+1,j = At,j · (1 + ρt,jS) , j ∈ {mn, ag} . (3)

where j is an index for sectors (here mn is manufacturing and ag is agriculture), S = 0.05 is the

maximum aggregate growth rate of TFP each period (based on Fuglie, 2012), and ρt,j ∈ [0, 1]

measures the arrival rate of innovations, i.e. how much of the maximum growth rate is achieved

each period. TFP growth in the model, which is driven by ρt,j , is a function of labor allocated to

sectoral R&D:

ρt,j = λj

(
Lt,Aj
Nt

)µj
, j ∈ {mn, ag} ,

where Lt,Aj is labor employed in R&D for sector j, λj is a productivity parameter (normalized

to 1 to ensure that TFP growth is bounded between 0 and S) and µj ∈ (0, 1) is an elasticity. The

parameters µmn and µag are structurally estimated and capture the extent of decreasing returns

to labor in R&D (e.g. duplication of ideas among researchers; Jones and Williams, 2000).

Expressions (3) and (4) represent a discrete-time version of the original model by Aghion

and Howitt (1992), in which the arrival of innovations is modeled as a continuous-time Poisson

7



process.8 One key departure from Aghion and Howitt (1992), however, is that the growth rate

of TFP is a function of the share of labor allocated to R&D. This representation, which is also

discussed in Jones (1995a) and Chu et al. (2013), is consistent with microfoundations of more

recent product-line representations of technological progress (e.g. Dinopoulos and Thompson,

1998; Peretto, 1998; Young, 1998), in which individual workers are hired by R&D firms and

entry of new firms is allowed (Dinopoulos and Thompson, 1999). One feature of such repre-

sentations, and therefore of ours, is the absence of the population scale effect, in other words a

positive equilibrium relationship between population and technological progress.9 Indeed, over

time the entry of new firms dilutes R&D inputs and neutralizes the scale effect, and in equilib-

rium aggregate TFP growth is proportional to the share of labor in R&D (see Laincz and Peretto,

2006).

2.1.3 Population dynamics

Population in the model represents the stock of effective labor units Nt and evolves according

to the standard motion equation:

Nt+1 = Nt(1 + nt − δN ) , N0 given , (4)

where 1/δN captures the expected working lifetime, which is set to 45 years (hence δN = 0.022),

and increments to the labor force ntNt are a function of labor Lt,N allocated to rearing and

educating children:

ntNt = χt · Lt,N .

In this setting, 1/χt is a measure of the time (or opportunity) cost of effective labor units, and

a significant component of this cost is education. As mentioned earlier, empirical evidence sug-

8 We implicitly make use of the law of large number to integrate out random arrival of innovation over discrete
time intervals.

9 Note that Boserup (1965) and Kremer (1993) use the population scale effect to explain the sharp increase of
productivity growth following stagnation in the pre-industrial era, and it is also present in unified growth theory
models by Galor and Weil (2000) and Jones (2001) among others. Empirical evidence from more recent history,
however, is at odds with the scale effect (e.g. Jones, 1995b; Laincz and Peretto, 2006). The fact that it is absent
from our model is important, because population is endogenous, so that accumulating population could be
exploited to artificially increase long-run growth.
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gests a complementarity between human capital and technology (e.g. Goldin and Katz, 1998),

and we specify the cost of children as an increasing function of the economy-wide level of tech-

nology:

χt = χLζ−1t,N /Aωt ,

where χ > 0 is a productivity parameter, ζ ∈ (0, 1) is an elasticity representing scarce factors

required in child rearing, At is an output-weighted average of sectoral TFP, and ω > 0 measures

how the cost of children increases with the level of technology. The parameters determining the

evolution of the cost of increments to the labor force (χ, ζ and ω) are estimated as described

below.

We show analytically in Lanz et al. (2016) that this representation of the cost of children

is consistent with the more comprehensive model by Galor and Weil (2000), in which educa-

tion decisions are explicit and the relationship between technology and human capital arises

endogenously. More specifically, in our model the accumulation of human capital is implicit,

as it is functionally related to the contemporaneous level of technology. Like in Galor and Weil

(2000), however, technological progress raises the cost of children by inducing higher educa-

tional requirements, and is therefore an important driver of the demographic transition. In other

words, the positive relationship between technology and the cost of effective labor units implies

that, over time, the ‘quality’ of children (measured by their level of education) required to keep

up with technology is favored over the quantity of children, leading to a decline of fertility and

population growth.

In addition to the opportunity cost of time, there is an additional cost to population in-

crements through the requirement that sufficient food must be produced. Formally, we follow

Strulik and Weisdorf (2008) and make agricultural output a necessary condition to sustain the

contemporaneous level of population (see also Vollrath, 2011; Sharp et al., 2012, for similar

approaches):

Y ag
t = Ntf t , (5)

where f t is per-capita demand for food. In order to include empirical evidence about the income
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elasticity of food demand, we further specify

f = ξ ·
(
Yt,mn

Nt

)κ
,

with income elasticity of food demand κ = 0.25 reflecting estimates reported in Thomas and

Strauss (1997) and Beatty and LaFrance (2005). We further calibrate the parameter ξ = 0.4 so

that aggregate food demand in 1960 is about 15 percent of world GDP (as per data reported in

Echevarria, 1997).

2.1.4 Agricultural land conversion

Land is a necessary input to agriculture, and agricultural land Xt has to be converted from a

fixed stock of natural land reserves (X) by applying labor Lt,X. In our model, land is therefore

treated as a scarce form of capital, and we write the motion equation for agricultural land as:

Xt+1 = Xt(1− δX) + ψ · Lεt,X , X0 given , Xt ≤ X , (6)

where the parameters ψ > 0 and ε ∈ (0, 1) are structurally estimated. Through equation (6), we

allow converted land to revert back to its natural state over a fifty-year time frame (i.e. δX =

0.02). Note also that an important implication of (6) is that, as labor is subject to decreasing

returns in land-conversion activities, the marginal cost of land conversion increases with Xt.

Intuitively, this captures the fact that the most productive plots are converted first, whereas the

cost associated with bringing marginal plots into production is higher.

2.1.5 Households preferences and savings

In the tradition of Barro and Becker (1989), household preferences are defined over own con-

sumption of a (composite) manufacturing good, denoted ct, the level of fertility nt and the

utility that surviving members of the family will enjoy in the next period Ui,t+1. Given survival

probability 1 − δN , and simplifying assumptions that (i) children are identical and (ii) parents

value their own utility in period t+1 the same as their children’s (see Jones and Schoonbroodt,
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2010), the utility function of a representative household is defined recursively as:

Ut =
c1−γt − 1

1− γ
+ β[(1− δN ) + nt]

1−ηUt+1 ,

where γ = 2 reflects an intertemporal elasticity of substitution of 0.5 (e.g. Guvenen, 2006), β =

0.99 is the discount factor and η is an elasticity determining how the utility of parents changes

with the number of surviving members of the household. As we show in Lanz et al. (2016), it

is straightforward to express preferences from the perspective of the dynastic household head,

yielding the following dynastic utility function:

U0 =
∞∑
t=0

βtN1−η
t

c1−γt − 1

1− γ
, (7)

and we set η = 0.01 so that the household’s objective is akin to the standard Classical Utilitarian

welfare function. Intuitively, it implies that altruism towards surviving members of the dynasty

remains almost constant as the number of survivors increases.

As in the multi-sector growth model of Ngai and Pissarides (2007), manufacturing output

can either be consumed or invested into a stock of physical capital:

Yt,mn = Ntct + It , (8)

where Ntct and It measure aggregate consumption and investment respectively. The motion

equation for capital is given by:

Kt+1 = Kt(1− δK) + It , K0 given , (9)

where δK = 0.1 is the yearly rate of capital depreciation (Schündeln, 2013).

2.2 Structural estimation of the model

A schematic representation of the model is provided in Figure 2. We formulate the model as a

social-planner problem, selecting paths for investment It, and allocating labor Lt,j and capital

Kt,j across activities in order to maximize intertemporal welfare (7) subject to technological
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Figure 2: Schematic representation of the model
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constraints (1), (2), (3), (4), (5) (6), (8), (9) and feasibility conditions for capital and labor:

Kt = Kt,mn +Kt,ag , Nt = Lt,mn + Lt,ag + Lt,Amn + Lt,Aag + Lt,N + Lt,X .

The constrained non-linear optimization problem associated with the planner’s program is solved

numerically by searching for a local optimum of the objective function (the discounted sum of

utility) subject to the requirement of maintaining feasibility as defined by the constraints of the

problem.10

We apply simulation methods to structurally estimate parameters determining the cost of

fertility (χ, ζ, ω), labor productivity in R&D (µmn,ag) and labor productivity in land conversion

10 The numerical problem is formulated in GAMS and solved with KNITRO (Byrd et al., 1999, 2006), a specialized
software programme for constrained non-linear programs. Note that this solution method can only approximate
the solution to the infinite horizon problem, as finite computer memory cannot accommodate an objective with
an infinite number of terms and an infinite number of constraints. However, for β < 1 only a finite number of
terms matter for the solution, and we truncate the problem to the first T = 200 periods without quantitatively
relevant effects for our results.
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(ψ, ε). In practice, we first calibrate the initial value of the state variables to match 1960 data,

so that the model is initialized in the first year of the estimation period. For each parameter to

be estimated from the data, we define bounds for possible values (0.1 and 0.9 for elasticities

and 0.03 and 0.3 for labor productivity parameters) and simulate the model for a randomly

drawn set of 10,000 vectors of parameters. We then formulate a minimum distance criterion,

which compares observed 1960-2010 time series for world GDP (Maddison, 1995; Bolt and van

Zanden, 2013), population (United Nations, 1999, 2013), crop land area (Goldewijk, 2001;

Alexandratos and Bruinsma, 2012) and sectoral TFP (Martin and Mitra, 2001; Fuglie, 2012)

with trajectories simulated from the model.11 In the model this data corresponds to Yt,mn+Yt,ag,

Nt, Xt, At,mn and At,ag respectively. Thus, formally, for each vector of parameters and associated

model solution, we compute:

∑
k

[∑
τ

(Z∗k,τ − Zk,τ )2/
∑
τ

Zk,τ

]
, (10)

where Zk,τ denotes the observed quantity k at time τ and Z∗k,τ is the corresponding value simu-

lated from the model. By gradually refining the bounds defined for each parameter, we converge

to a vector of parameters that minimizes objective (10). We find that the model closely fits the

targeted data; the resulting vector of estimates and fitted trajectories over the estimation period

are reported and briefly discussed in the Appendix (see also Lanz et al., 2016, for an extensive

discussion of the estimation results).

At this stage it is important to note that the social planner representation is mainly used

as a tool to make structural estimation of the model tractable: we rationalize the data “as

if” it had been generated by a social planner. Thus market imperfections prevailing over the

estimation period will be reflected in the parameters that we estimate from observed trajectories,

and will thus be reflected in the baseline simulations of the model (i.e. using the model to

11 Note that TFP growth estimates are subject to significant uncertainty, and we conservatively assume that it
declines from 1.5 percent between 1960 and 1980 to 1.2 percent from 1980 to 2000, and then stays at 1 percent
over the last decade.
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extrapolate the behavior of the system observed over the past fifty years).12 But given the

estimated technological parameters, simulations with the model away from the baseline will

reflect a socially optimal allocation of resources.

2.3 Introducing stochastic shocks to agricultural productivity

In the basic formulation of the model, which is used for estimating the parameters over the

period 1960-2010, the evolution of sectoral TFP is deterministic and depends on the share of

labor employed in sectoral R&D activities. We now study the evolution of the system beyond

2010, and introduce stochasticity in how agricultural TFP evolves over time. Specifically, it is

assumed that technological progress in agriculture is subject to stochastic shocks of size ε > 0

that occur with probability p. Conversely with probability 1− p there is no shock to agricultural

productivity (hence ε = 0) and the evolution of TFP occurs as per the deterministic specification

described above. Both p and ε are assumed to be known by the planner.

Formally, equation (3) describing the evolution of agricultural productivity is augmented

with a non-negative term, which represents the possibility that agricultural TFP may not follow

the functional trajectory we have postulated:

Ãt+1,ag,s = Ãt,ag,s · (1 + ρt,ag,sS − εt+1,s) , (11)

where εt+1,s captures the specific realization of the shock in state of the world s, and we index all

variables by s to capture the fact that they are conditional on a specific sequence of εt,s over time.

A stochastic shock affects outcomes in period t+1, while the planner only observes the outcome

after allocating resources in period t. We further assume that the planner is an expected utility

maximizer, weighting welfare in the different states of the world by its respective probability.

The ensuing objective function is then:

W =
∑
s

ps

∞∑
t=0

βtN1−η
t,s

c1−γt,s − 1

1− γ
, (12)

12 Because there are externalities in the model, most notably in R&D activities (see Romer, 1994, for example) the
social optimum determined by the social planer solution will differ from a decentralized allocation. Thus if we
were able to estimate the parameters using a decentralized solution method, a different set of estimates would be
required to match observed trajectories over the estimation period. As shown by Tournemaine and Luangaram
(2012) in the context of similar model (without land), however, quantitative differences between centralized
and decentralized solutions are likely to be small.
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with
∑

s ps = 1.13

Even though this stochastic structure is quite simple, the number of possible states of the

world in each period grows with 2t. In turn, because the model is formulated as a non-linear

optimization problem, this implies that the number of variables that needs to be computed

over the whole horizon increases exponentially.14 Given that the dimensionality of the decision

problem grows with the set of possible states of the world, we make two further simplifications.

First, we solve the model from 2010 onwards using two-year time steps (instead of yearly time

steps). This significantly reduces the number of variables that needs to be computed, without

significantly affecting the resulting trajectories.15 Second, we consider shocks in only three time

periods, which is sufficient to illustrate the mechanisms at work.

The shock we consider is a 10 percent probability that agricultural production declines by 5

percent each year over two years. This is in the range implied by Figure 1, and is also broadly

consistent with changes in productivity discussed in Nelson et al. (2014) and Cai et al. (2014),

as we further discuss below. Hence, starting the simulation in 2010, we assume that the first

realization of the shock may occur after 2016 allocation decisions have been made, so that

effects are felt in 2018. In the bad state of the world, which occurs with a probability of 10%,

agricultural TFP is (1−0.05)2 ∼= 0.9 of that prevailing in the good state of the world. In expected

value terms, the shock is thus roughly equivalent to a one percent decrease in TFP over two

years. The same shock can then occur in 2018, with effects felt in 2020, and in 2020, with

effects felt in 2022.

To summarize, we initialize the model in 2010, and negative TFP shocks can occur in 2016,

2018 and 2020, with effects being felt in subsequent periods. After 2022, no more shocks occur

and the problem becomes deterministic (conditional on the state of the world in which the

planner happens to be). Of course, the results would remain qualitatively similar if we were

13 Note that this formulation implies the standard assumption that markets are complete, both over time and across
states of the world.

14 More specifically, as the planner faces a dynamic problem, optimal decisions in each time period are conditional
on the history of shocks (i.e. where he is in the exponentially-growing uncertainty tree), and the planner max-
imizes the expected utility of his decisions over the remaining event tree. Thus states of the world sharing a
common parent node will share decision variables until the subsequent realization of the productivity shock, and
diverge thereafter, so that computational requirements increase.

15 Increasing the time-steps to evaluate the choice of the controls implies some small differences in optimal paths
relative to the solution using one-year time steps. Another approach would be to formulate the problem recur-
sively and solve it with dynamic programming methods. This approach is, however, subject to dimensionality
restrictions in terms of the number of state variables that can be included.
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Table 1: Deterministic ‘no shocks’ scenario: Baseline values for selected variables

2010 2020 2030

World population (billion) 6.95 7.73 8.47
Cropland area (billion hectares) 1.62 1.66 1.69
Yearly agricultural TFP growth rate 0.0094 0.0086 0.0078
Per-capita consumption (thousand intl. dollars) 4.29 4.88 5.46

to consider the reoccurence of shocks beyond 2020, so that it is relatively easy to see how our

results would generalize.

3 Results: Optimal control and simulations

3.1 Scenario description

To evaluate the socially optimal response to agricultural productivity risk, we contrast trajec-

tories resulting from four different situations. First, we consider a case in which no shocks to

agricultural TFP will occur, and the planner knows this for sure. This represents our baseline,

as reported in Lanz et al. (2016). Values for selected variables are reported in Table 1. World

population starts at just below 7 billion in 2010 and grows to 8.5 billion by 2030, a 20 per-

cent increase. At the same time, crop land area increases by 70 million hectares, or 5 percent.

These figures are broadly consistent with the latest population projections of the United Nations

(2013) and with land-use projections by FAO, reported in Alexandratos and Bruinsma (2012).

The growth rate of agricultural TFP starts at 0.9 percent per year in 2010 and declines over

time, which is rather conservative compared with the assumptions used in Alexandratos and

Bruinsma (2012). Importantly, these figures represent projections from the fitted model and are

thus informed by the evolution of agricultural TFP from 1960 to 2010, as the estimated model

essentially projects forward the pace of development that has been observed in recent history.

The second situation we consider is also deterministic. We assume that shocks occur in 2016,

2018 and 2020. We label this scenario ‘2016-2018-2020.’ In the period just following each of

the three shocks, agricultural TFP is exogenously brought down by 10 percent, although the

planner anticipates each shock and can reallocate resources relative to the baseline.
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In the third scenario, labeled ‘expected value’, the planner allocates resources taking into

account the expected value of the TFP reduction. In other words, he takes into account the

risk of a 10 percent reduction in TFP each decision period, but weights that reduction by the

associated probability of 10 percent. Thus, in each decision period, agricultural TFP growth

is exogenously brought down by around one percent. This scenario amounts to analyzing the

allocation decisions of a risk-neutral planner, and where the realization of the shock happens to

be exactly the expected value of the shock.

Finally, we compute trajectories that maximize expected utility. In this situation, the plan-

ner is risk-averse (relative risk aversion is set to γ = 2). He takes into account the risk that

agricultural TFP may decline, and what this entails for social welfare. A key point is that allo-

cation decisions are contingent on the realized state of the world. In other words, after each

decision period in which the risk is realized, the decision tree branches out, and the planner

makes allocation decisions contingent on being in a particular node in the uncertainty tree. By

construction, there are then 23 = 8 possible states of the world in 2030, and thus the same num-

ber of stochastic scenarios for an expected-utility maximizing planner (we label each stochastic

scenario according to the years in which TFP shocks are realized).

3.2 Agricultural technology paths

Figure 3 shows the paths for agricultural TFP under alternative scenarios. Starting with the

deterministic scenarios, which are displayed in panel (a), agricultural TFP grows at around one

percent per year until 2030 under the best-case ‘no shocks’ scenario. Under the deterministic

‘expected value’ path, TFP grows at a lower pace from 2016 to 2020, reflecting the expected

value of the negative shocks. But before 2016 TFP grows ever so slightly quicker in the ‘expected

value’ scenario, because the planner knows that small negative shocks will occur from 2016

to 2020 and makes provisions for them (see below). This anticipatory effect, as well as the

subsequent shock to productivity, is more clearly apparent in the worst-case ‘2016-2018-2020’

scenario. Differences across deterministic scenarios are further illustrated in Figure 4, panel (a),

which reports paths for agricultural TFP relative to the ‘no shocks’ scenario. It shows that, by

2022, agricultural TFP on the ‘expected value’ path is around three percent lower than on the

‘no shocks’ path, and in the ‘2016-2018-2020’ scenario TFP is more than 20 percent lower.

Turning to the stochastic scenarios, reported in panel (b) of Figures 3 and 4, we distinguish
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Figure 3: Agricultural TFP under alternative scenarios

(a) Deterministic scenarios
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(b) Stochastic scenarios
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four different groups of possible realizations according to the number of shocks that occur over

time (in Figure 3 we report the posterior probability distribution for each groups of outcomes).

First, under the stochastic ‘no shocks’ scenario there is no shock occurring in either 2016, 2018

or 2020, a state of the world with posterior probability of around 0.73. However, unlike the de-

terministic ‘no shocks’ scenario, the planner prepares for the possibility of negative TFP shocks,

and accordingly TFP is slightly higher. By contrast, in stochastic scenario ‘2016-2018-2020’ a

negative shock occurs in all three periods. This scenario has a posterior probability of 0.001.

Before the first shock, the planner does not know for sure whether the world will end up in a

good state, or in a bad, shock state. Because of the consequent need to hedge, agricultural TFP

is not significantly different from that of the deterministic ‘no shocks’ scenario. However, after

2020 agricultural TFP in stochastic scenario ‘2016-2018-2020’ is significantly lower than in the

deterministic ‘2016-2018-2020’ scenario, because the planner did not fully anticipate that he

would end up in the worst outcome possible.

The last two groups of stochastic scenarios include those where either one or two negative

TFP shocks occur. In scenarios ‘2016’, ‘2018’ and ‘2020’, only one TFP shock occurs in each of

these respective years, so that by 2022 agricultural TFP is roughly 10 percent lower than under

the deterministic ‘no shocks’ scenario. The posterior probability associated with this group of
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Figure 4: Agricultural TFP relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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scenarios is around 0.24. Under scenarios ‘2016-2018,’ ‘2016-2020’ and ‘2018-2020’ there are

two shocks occurring, so that by 2020 agricultural TFP is roughly 20 percent lower relative to

the deterministic ‘no shocks’ scenario. The posterior probability is around 0.03. Note that, in

both groups of scenarios, TFP growth after 2020 is slightly more rapid than under the ‘no shocks’

scenarios, as more resources are allocated to R&D. However, catching up lost productivity gains

is very slow.

3.3 Optimal global land use

Implications of alternative paths for agricultural TFP in terms of global cropland are displayed

in Figure 5. We report the differences in cropland area relative to the deterministic ‘no shocks’

scenario (in million hectares). Recall that, in the deterministic ‘no shocks’ scenario, cropland

area increases by 70 million hectares in 2030 relative to 2010 (see Table 1).

An important feature of Figure 5 is that, if the planner knows for sure that TFP will decline in

the future (panel a), optimal cropland area immediately diverges from the ‘no shocks’ scenario,

with significantly more land being converted from natural land reserves. By 2030, an additional

70 million hectares are converted in the deterministic ‘2016-2018-2020’ scenario, which corre-

sponds with a doubling of the pace at which land is converted in the ‘no shocks’ scenario. Why
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Figure 5: Global cropland area relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 

No shocks 2016 2018 2020 

2016-2018 2016-2020 2018-2020 2016-2018-2020 

is so much extra land brought into agricultural use? The answer is that the planner prefers to

substitute towards land to maintain the level of food production, because other production fac-

tors have to be taken away from the manufacturing and R&D sectors, with a consequent large

opportunity cost. The deterministic ‘expected value’ path only features a slightly larger stock of

cropland than in the ‘no shocks’ scenario. Indeed, over 20 years only an additional 7 million

hectares are converted.

Turning to the stochastic scenarios, reported in panel (b), we observe that they all feature a

larger stock of land relative to the ‘no shocks’ scenario. However the stock of land in stochastic

scenario ‘2016-2018-2020’ (in which three negative shocks occur) is significantly lower than

that in the corresponding deterministic ‘2016-2018-2020’ scenario. Again, the planner must

always hedge against an uncertain future in the stochastic scenarios, but whenever a negative

TFP shock occurs there is an immediate increase in the amount of agricultural land brought into

the system, in order to compensate for lower agricultural TFP.

3.4 Welfare analysis: Population and per-capita consumption

We now turn to the welfare implications of uncertainty about agricultural TFP, focusing on

population dynamics and per-capita consumption of the manufacturing product. Recall that
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Figure 6: Global population relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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these are the two variables entering the objective function of the social planner (see equation

7).

Results for global population paths, relative to the deterministic ‘no shocks’ scenario, are

reported in Figure 6. As expected, a reduction in agricultural TFP has a negative impact on

population. This follows from the fact that agricultural productivity growth declines, and the

relative cost of food production increases, so the planner optimally chooses to reduce fertility

on account of the higher cost of feeding the population. The effect is again most striking in the

deterministic ‘2016-2018-2020’ scenario, where the accumulation of population is significantly

slower compared to the ‘no shocks’ scenario: by 2030, population is 170 million lower. This

is substantial, given it is only caused by a reduction of agricultural TFP of 25 percent over a

window of 6 years.

The impact of a reduction of agricultural TFP on population is long lasting, as differences

between paths in which a negative shock occurs and the deterministic ‘no shocks’ scenario are

hysteretic, that is they remain in the long run. In particular, we observe that stochastic scenarios

with the same number of shocks (on the one hand ‘2016’, ‘2018’ and ‘2020’, and on the other

hand ‘2016-2018’, ‘2016-2020’ and ‘2018-2020’) converge to the same loss of global population

relative to the deterministic ‘no shocks’ scenario.
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Figure 7: Per-capita consumption relative to the deterministic ‘no shocks’ scenario

(a) Deterministic scenarios
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(b) Stochastic scenarios
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Per-capita consumption of the manufacturing good relative to the deterministic ‘no shocks’

scenario is reported in Figure 7. We find that differences in per-capita consumption between

the deterministic best and worst cases (panel a) fluctuate at around one percent. This cap-

tures the fact that, in our model, the two consumption goods are complements, so that more

expensive agricultural products also reduce the demand for other consumption goods. In other

words, in the face of a certain or uncertain shock to agricultural TFP in the future, the planner

reduces consumption of both goods in order to smooth consumption over time, and allocates

manufacturing output towards increasing the stock of capital.

In stochastic scenarios, reported in panel b, per-capita consumption fluctuates significantly.

In stochastic scenario ‘no shocks’, per capita consumption is initially lower than under the de-

terministic ‘no shocks’ scenario, although after the first shock the stochastic ‘no shocks’ scenario

reaches almost 0.5 percentage point higher than the deterministic ‘no shocks’ scenario. When

a negative shock occurs, however, there is a sharp decline in per-capita consumption of around

1.5 percent relative to the deterministic ‘no shocks’ scenario. In turn, in the worst stochastic sce-

nario ‘2016-2018-2020’ where three shocks occur, the drop in per-capita consumption is much

larger than the corresponding deterministic ‘2016-2018-2020’ scenario.
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4 Discussion

As expected, our results suggest that uncertainty about the future evolution of agricultural TFP

has major implications for growth and land use. In our first group of scenarios, agricultural

TFP is around 10 percent lower as compared to our baseline trajectory. If the growth rate

of agricultural TFP is one percent per year, this corresponds roughly to a ten-year hiatus in

technological progress. Given our assumptions, the probability that the planner faces such a

state of the world is around 25 percent. By 2030, our model indicates that it would correspond to

approximately 20 million hectares of crop land in addition to the 70 million hectares conversion

occurring in the baseline, and a population around 40 million lower than in the baseline. If two

shocks occur, so that agricultural TFP is around 17 percent lower relative to the baseline, more

than 30 million hectares of cropland are converted. At the same time, population is 80 million

lower.

While these figures may appear to be small relative to the current cropland area and popu-

lation, they are, from a policy perspective, quite large. From 1990 to 2010, about 100 million

hectares were converted into cropland. In this period, there has been growing concern about

the value of the lost natural land and associated ecosystem services. Most of the land conver-

sion has been and will be taking place in developing countries, where a large share of valuable

biodiversity remains, whereas in developed countries we observe a decline in cropland area

(Alexandratos and Bruinsma, 2012). In addition, as strategies to mitigate climate change, in

the future we may see increasing land used for the production of biofuels, or for afforestation,

instead of for food production. The scale of our results is thus important from the perspective

of global conservation and rural land-use policy. Second, while the ‘loss’ of population is small

relative to observed population growth and that expected to take place in near future, it is sub-

stantial, as it represents the optimal fertility response to lower agricultural productivity. Put

another way, a non-optimal fertility response by a large number of households maximizing their

own private objectives could generate a food-security problem at the aggregate level.

How do our results compare with those of Cai et al. (2014)? First, it is useful to provide

some more details of their work. They formulate a partial equilibrium model of land allocation

calibrated to 2005 data and solved up to 2100. Households are fully forward-looking and value

different products from land, namely food, energy goods (including biofuels), timber produc-
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tion and ecosystem services. As in our model, preferences are non-homothetic, so that as agents

become wealthier their consumption of food grows less rapidly than that of other products. Agri-

cultural yields (measured in tons per hectares) are assumed to grow linearly, so that the growth

rate declines over time, which is similar to our model (see Lanz et al., 2016). Furthermore, their

baseline paths for population and land, when compared up to 2030, are very similar to ours. In

2030, they report a world population of 8.2 billion and cropland area around 1.7 billion hectare.

They then introduce a risk of an irreversible shift to a bad state of the world (or “tipping

point”). The hazard rate associated with the bad state of the world is assumed to be 0.34

percent in each period, so that by 2025 the probability that the bad scenario occurs is around

10 percent. In the pessimistic state of the world, agricultural yield is around 10 percent lower

relative to that prevailing in the optimistic state. This broadly corresponds to our scenario 2, in

which one negative productivity shock occurs by 2022.

In their framework, however, agricultural productivity shocks do not affect population, and

the main adjustment is the allocation of land across different usages. In particular, if the 10 per-

cent probability of a 10 percent productivity shock materializes in 2025, crop land increases by

5 million hectares by 2030 relative to the baseline. This is significantly lower than in our model

(see scenario 2 in Figure 5). The main explanation for this difference lies in the fact that, in Cai

et al. (2014), consumers also value alternative uses of land, notably through ecosystem services

associated with unconverted land. Furthermore, consumers can also substitute away from food

production if it becomes relatively more expensive. By contrast, our model is a general equilib-

rium framework, and agriculture competes with manufacturing over other primary factors. An

implication is that land will appear more attractive relative to other factors of production as a

way to maintain agricultural production. Thus, in this sense, the planner in our model will be

more likely to convert land in order to sustain food production.

5 Conclusion

The development of agricultural technology is a key determinant of the ability to sustain enough

food production in a world with growing population and per-capita income. Yet assessing un-

certainties about its future evolution is difficult because of the wide ranging implications it will

have. In this paper we have taken a dynamic-stochastic view of the problem, focusing on the
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macroeconomic consequences at the global level, where both technological progress and popu-

lation are endogenous.

The main contribution of our work is to quantify implications of technological uncertainty,

showing that it implies significantly more land conversion to sustain agricultural production.

This result has direct implications for conservation policies. Importantly, our model does not

account for welfare effects associated with preserving non-converted land. In our view, calibrat-

ing the demand function for biodiversity services is inherently difficult. However, we recognize

that it may become an important component in the allocation of land, especially in the future

as the population grows richer and biodiversity becomes scarcer. In this sense, our results thus

represent a business-as-usual path, where there is no policy intervention aiming to internalize

the value of biodiversity.

Our work further shows that population is significantly affected by variability in agricultural

TFP. Lower fertility on account of higher food prices may be interpreted as higher mortality,

since the planner cares about the final level of population.

We close by highlighting that our global view of the problem hides distributional issues.

Most famines and environmental degradation occur at the local level, and in particular in devel-

oping countries. Agricultural TFP shocks may disproportionately affect low-income countries.

Similarly, since land conversion will most likely occur in developing countries, technological

uncertainty may exacerbate further land conversion and biodiversity losses there.
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Appendix Estimated parameters and model fit

The vector of parameters that minimize equation (10) are reported in Table A1, and the resulting

trajectories are reported in Figure A1, comparing observations over the period from 1960 to

2010 with simulations from the estimated model. As evident from the pictures, the estimated

model provides a very good fit to recent history, and the relative squared error (10) across

all variables is 3.52 percent. The size of the error is mainly driven by the error on output

(3.3 percent), followed by land (0.1 percent) and population (0.03 percent). Figure A1 also

reports the growth rate of population, which is not directly targeted by the estimation procedure,

showing that the simulated trajectory closely fits the observed dynamics of population growth.

Table A1: Estimation results: Parameters

Parameter Description Estimates

µmn Elasticity of labor in manufacturing R&D 0.581
µag Elasticity of labor in agricultural R&D 0.537
χ Labor productivity parameter in child rearing 0.153
ζ Elasticity of labor in child rearing 0.427
ω Elasticity of labor productivity in child rearing w.r.t. technology 0.089
ψ Labor productivity in land conversion 0.079
ε Elasticity of labor in land-conversion 0.251
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Figure A1: Estimation of the model 1960 – 2010 (source: Lanz et al., 2016).
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