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Abstract

This paper analyses the impact of green innovation on energy intensity in a set of 14 in-

dustrial sectors in 17 OECD countries over the 1975-2005 period. We create a stock of green

patents for each industrial sector and estimate a translog cost function to measure the impact

of green innovation on energy intensity, next to other factors such as input substitution and

autonomous technical change. We find that green innovation has contributed to the decline

in energy intensity in the majority of sectors: the median elasticity of energy intensity with

respect to green patenting is estimated at -0.03 in our sample. Hence, a 1% increase in green

patenting activities in a given sector is associated with a 0.03% decline in energy intensity. The

magnitude of the effect is larger in energy-intensive sectors and in more recent years. We also

find that the impact of an additional green patent on energy intensity is larger than an average

non-green patent. Our results are robust to alternative definitions of green patents.
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1 Introduction

Reducing the energy intensity1 of production processes is a core objective of climate policies

since it is an important mean to reduce carbon emissions. According to estimates of the Inter-

national Energy Agency, 31% of emissions reductions necessary to halve emissions by 2050 com-

pared to 2009 levels can be achieved through this lever (IEA, 2012). In addition, decreases in en-

ergy intensity contribute to the competitiveness of industries facing higher energy prices, which

makes energy efficiency a ‘win-win’ objective for policymakers and the private sector (Porter and

Van der Linde, 1995). Finally, the decoupling of economic growth from energy use may also con-

tribute to improve energy security and the resilience of economies depending on energy imports.

Over the last decades, industrialized countries have witnessed a significant decrease in the

energy intensity of their economies. As shown in Figure 1, energy intensity, i.e. the quantity of

energy used per unit of production value, declined on average by a factor of 4 over 1970-2005.

According to recent studies (e.g. Mulder and de Groot, 2012; Voigt et al., 2014), this decline is

mainly explained by improvements within sectors, rather than across sectors. In other words, the

decrease in energy intensity at the aggregate level is not explained by a composition effect, i.e.

a shift to cleaner sectors in the economy, but rather the result of a more efficient use of energy

within industries. There are two main within industry sources of improvements, namely input

substitution – whenever firms substitute energy by using more labour or capital for instance, or

technological innovation – whenever firms save on energy by using new energy-efficient produc-

tion techniques. As an illustration, Figure 1 shows that the stock of green technologies, as proxied

by the cumulative number of green patenting activities over time in our set of 17 OECD countries2,

has been steadily increasing over time since the 1980s.

Since an increase in energy prices can trigger both a substitution of inputs away from energy

and innovation in green technologies, Figure 1 also plots the evolution of the prices of energy over

time. While energy intensity seems to be negatively correlated with energy prices until mid-1980s,

the relationship is less clear for the second part of the period. The objective of the current study

is to clarify empirically the role of green technologies for the decline in energy intensity for a set

1Energy efficiency is defined as a technical measure, i.e. a ratio of input and output, whereas energy intensity refers
to the quantity of energy used over the value of production.

2The precise definition of the stock of green patents is given in Section 3.
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Figure 1: Energy intensity, energy prices and green patent stocks – OECD average

Notes: All data have been normalized so that 1995 = 1 and are averaged across sectors. Energy intensity is the ratio
of an index of quantity of energy to value of output. Green patent stock is the average of the sector-specific stock of
energy efficient patents. Real prices of energy are indexes of constant 1995 USD.

of 14 industrial sectors in 17 OECD countries over the 1975-2005 period. Green technologies are

defined as technologies impacting energy usage, such as combustion processes or heat exchange

apparatuses. Using the OECD Triadic Patent Families database, we identify green patenting ac-

tivities using International Patent Classification (IPC) codes (Johnstone et al., 2010; Popp, 2001)

and match patents to industrial sectors by applying a recently developed concordance table (Lyb-

bert and Zolas, 2014). This allows us to compute the stock of relevant green innovation for each

industrial sector in our set of OECD countries. Using production data at the industry level from

the EU-KLEMS database, we estimate a translog production function following the (widely-used)

framework developed by Berndt and Wood (1975) (see for example Haller and Hyland, 2014; Kim

and Heo, 2013; Arnberg and Bjorner, 2007) to measure the impact of green patents on energy inten-

sity per sector. We find that an increase in green patenting activities is associated with a reduction

in energy intensity in most of the sectors in our sample, with a median elasticity of -0.03. Hence,

a 1% increase in green patenting activities in a given sector is associated with a 0.03% decline in
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energy intensity at the median. We also find that the magnitude of the effect for green patents is

larger in energy-intensive sectors and also larger than an average non-green patent.

Our study is related to an extensive literature which has used input demand functions to iden-

tify substitution patterns, in particular between energy and capital, since the 1970’s (Binswanger,

1974; Berndt and Wood, 1975; Apostolakis, 1990). This literature has mainly focused on the role

of energy prices on the demand for energy and capital inputs. Instead, the impact of technology

has been neglected as the latter is often simply modelled as a time trend in the demand equations

(for example in Jorgenson and Fraumeni, 1981; Welsch and Ochsen, 2005; Ma et al., 2008). This

presents important drawbacks. First, it does not allow to cater to the induced innovation litera-

ture, which states that when energy prices are high, firms will tend to innovate in order to develop

energy-saving technologies (Hicks, 1932; Ahmad, 1966; Jaffe and Palmer, 1997; Newell et al., 1999;

Acemoglu, 2002; Popp, 2002). Second, the use of a time trend allows to observe only aggregate

technical change without pinning down the specific effect of energy-saving technologies. The ma-

jor reasons for this simplification in the energy input demand functions were first the absence of

global datasets on innovation, and second the need for concordance tables to relate technologies

to their potential sector of use to bridge the gap between patents and industrial sectors.

Some recent papers have circumvented the lack of specific measure of technology by using

past energy prices as a proxy for biased technical change (Sue Wing, 2008; Mulder et al., 2014).

Sue Wing (2008), for example, finds that within-sector gains in energy intensity in the U.S. occur

through price-induced substitution of variable inputs, adjustments in quasi-fixed inputs, and, to

a limited extent, through price-induced innovation. However, the use of past energy prices as a

proxy for biased technical change requires the ex-ante assumption that energy prices are indeed

an incentive to innovate. In contrast, Popp (2001) presents an unique study on the role of energy-

efficient innovation on sectoral energy intensity where technology is measured using patent data.

The author uses a concordance table based on Canadian industries, the Yale Concordance Table, to

match technologies to their potential sectors of use, and finds an estimate of -0.06 for the short run

elasticity between green technology and energy intensity averaged across all sectors. Overall, his

results suggest that price-induced input substitution and induced innovation decreased energy

consumption by a factor of two-thirds and one-third respectively. By contrast to this analysis,

which was limited to the US, our study brings novel insights on the impact of green innovation on
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energy intensity for a large set of OECD countries. This helps to uncover whether the US results

can be generalized more broadly. Moreover, his study is limited to the 1972-1991 period, leaving

out an important time period in terms of green innovation. Our analysis is original as it covers

three decades of data up to 2005.

The remainder of this paper is structured as follows. Section 2 describes our empirical method-

ology. Section 3 provides a discussion of our data sources as well as some descriptive statistics.

Section 4 presents the estimation results. Section 5 concludes.

2 Theoretical Framework

There is a large body of literature estimating energy demand using a cost function approach

following the pioneering work of Berndt and Wood (1975).3 We consider an industry’s production

function:

Y = f(K,L,E,M, T ) (1)

where f(·) represents an industry’s technology that produces output Y using the four input fac-

tors: capital K, labor L, materials M and energy E, and T the level of technology. We transform

Equation (1) into a cost function by using the duality theorem between production and cost func-

tions (Shephard, 1953):4

C = g(PK , PL, PM , PE , Y, T )

where C is the minimum cost required to produce Y and Pi is the i-th input price. This allows to

circumvent the issue of estimating production functions with endogenous choice of inputs (Bin-

swanger, 1974). As the level of inputs is a choice variable for firms, estimating econometrically a

production function potentially violates the assumption of strict exogeneity of regressors, as there

could be numerous factors affecting simultaneously the output level and the choice of inputs. By

using input prices in a cost function framework, this particular problem is most likely avoided, as

prices can be considered exogenous provided that sectors are small. In addition, for the purpose

3Recent studies include Welsch and Ochsen (2005); Arnberg and Bjorner (2007); Ma et al. (2008); Kim and Heo (2013);
Haller and Hyland (2014).

4Under the duality theorem, if the production function is twice differentiable, then there is a corresponding cost
function that is also twice differentiable.
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of estimation, a flexible functional form imposing no a priori restrictions on the elasticities of sub-

stitution is preferred to estimate g(·). We thus employ a translog cost function, which makes no

restrictive assumptions on the estimated substitution elasticities and on the optimal path of input

factor adjustments induced by price changes (Christensen et al., 1973), expressed as: 5

lnC = β0 +
∑
i

βilnPi + βY lnY + βT lnT

+
1

2
βY Y (lnY )2 +

1

2
βTT (lnT )

2 +
1

2

∑
i

∑
j

βijlnPilnPj

+
∑
i

βiY lnY lnPi +
∑
i

βiT lnT lnPi (2)

with i, j = K,L,M,E. Slutsky symmetry condition is imposed by setting βij = βji. Because of the

collinearity problem, an estimation of the first derivatives of (2) is preferred to a direct estimation

of the cost function. Cost minimization w.r.t. input prices implies the following:

∂lnC

∂lnPi
= βi +

1

2
2βiK lnPK +

1

2
2βiLlnPL +

1

2
2βiElnPE + βiY lnY + βiT lnT (3)

Under Shephard’s lemma, assuming cost minimization, the demand functions for input i are

equal to the derivative of expenditures with respect to price (i.e the cost shares for each input).

Equation (3) equals the energy cost share:

∂lnC

∂lnPi
=
∂C

∂Pi

Pi

C
= Qi

Pi

C
=
PiQi

C
= si (4)

where si is the cost share of the i-th input. Hence, the cost share for each input is defined as:

si = βi +
∑
j

βijlnPj + βiY lnY + βiT lnT (5)

The inclusion of βiY measures potential scale effects in production, or whether the size of the

sector affects the cost share of inputs (for example if an increase in the output of the sector shifts

the production function towards, say, more capital). The coefficient βiT measures shifts due to

technical change. To ensure homogeneity of degree one in prices (a doubling of all prices results

5See Thompson (2006) for a discussion of the specification of the translog cost function.
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in a doubling of total costs), the following restrictions are imposed:

∑
i

βi = 1 and
∑
i

βij =
∑
i

βiY =
∑
i

βiT = 0

Since cost shares sum up to unity, the disturbance terms sum up to one, making the covariance

matrix singular. The estimation procedure involves dropping one of the equations from the equa-

tion system and normalizing all input prices.6 Since the objective of our paper is to measure the

contribution of green technologies in particular, we decompose the technology variable between

green technology (G) and autonomous technical change captured by a time trend t:7,8

si = βi + βiLln
PL

PM
+ βiEln

PE

PM
+ βiK ln

PKt

PM
+ βiY lnY + βiGlnG+ βitt+ εi (6)

for i = K,L,E with cross-equation symmetry imposed. We estimate this equation using iter-

ated three-stage least squares (Berndt, 1991) such that results are not sensitive to the choice of the

omitted equation. We take advantage of our panel data structure to estimate the system of Equa-

tions (6) sector-by-sector while controlling for unobserved heterogeneity at the country level.

We measure the impact of green technology by computing the elasticity of energy intensity

with respect to green technology. To obtain this elasticity, the first step is to derive energy intensity

from the cost share functions as defined in Equation (6). Using the zero profit condition stating

that TC = pY Y and substituting into the definition of sE as in Welsch and Ochsen (2005), we are

able to recover energy intensity E/Y . We simply multiply sE by PY
PE

:

sE =
PEE

TC
=
PEE

PY Y
;

E

Y
=
PY

PE
sE (7)

Using hats to denote estimated parameters, the elasticity of energy intensity w.r.t. green tech-

nology is:9

6The choice of numeraire should not affect the estimated elasticities. Here, following Welsch and Ochsen (2005), we
use material input as numeraire.

7Obviously, different empirical specifications are possible, each answering different research questions related to
innovation. For instance, one could focus on overall technical change and thus use total patents, or on directed technical
change and use the share of green patents. In this paper we are primarily interested in measuring the impact of green
technologies. We also provide estimates of the impact of general, non-green technologies in a robustness check.

8This framework measures the input bias of technological change (a potential shift in the isoquant structure or
slope), and thereby ignore Hicks neutral technological change affecting all inputs simultaneously. Empirical studies
testing for evidence of neutrality of technological change usually reject it (Hesse and Tarkka, 1986; Hunt, 1986).

9Derivation can be found in Appendix A.
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ε̂E,G =
∂ln(E/Y )

∂lnG
=
β̂EG

ŝE
(8)

with β̂EG and ŝE the estimated coefficients on green technological change in the energy de-

mand equation and the mean predicted cost share of energy.

3 Data and Descriptive Statistics

3.1 Patent data

Technological innovation is measured using patent counts. Besides being readily available,

patents present the advantage of being a good indicator of innovative activity and tend to be

highly correlated with a large number of alternative measures of innovation (see Acs and Au-

dretsch, 1989; Comanor and Scherer, 1969; Griliches, 1990; Hagedoorn and Cloodt, 2003; Popp,

2005). We extract patent data for 17 countries from the OECD Triadic Patent Families (TPF)

database (Dernis and Khan, 2004), over the 1975-2005 period.10 Triadic patents families are patents

filed at the European, Japanese and US patent offices (respectively, EPO, JPO and USPTO) to pro-

tect the same invention.11 These technologies tend to be of much higher economic value than

patents filed only at a single national authority, as firms would only be willing to bear the substan-

tial costs involved with filing a patent at the EPO, JPO and USPTO, if they expect their invention

to be of high commercial value (Nesta et al., 2014). This quality hurdle thus removes low-value

inventions, reducing the variance in patent quality (Johnstone et al., 2010), identified as one of the

main challenges of methodologies using simple patent counts (Griliches, 1990; Popp, 2001). The

use of triadic patents also has the advantage to reduce the home bias (Griliches, 1990): applicants

tend to apply for patent protection in their home country more than in other countries, overesti-

mating the stock of patent of domestic applicants compared to foreign applicants when relying on

data from a single patent office.

Following Jaffe et al. (1993) (see also the OECD patent manual, 2009), we allocate patents to

countries using the address of the inventor. When a patent is invented by multiple inventors

10We consider the following countries: Austria, Belgium, Germany, Denmark, Spain, Finland, France, Great Britain,
Italy, Japan, South Korea, Luxembourg, the Netherlands, Portugal, Sweden, Slovenia and the United States.

11For a typology of patent families, please refer to Dernis and Khan (2004) or Martinez (2010).
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located in different countries, we disaggregate them using fractional counts. We count patents per

priority year, which is the date closest to the date of invention (see OECD, 2009, chapter 4).

3.1.1 Identification of green patents by sector

Our identification of the relevant green technologies uses the following strategy. In a first step,

we start from the broadest possible list of green patented technologies – identified using Inter-

national Patent Classification (IPC) codes. We use the extensive list of climate change mitigation

technologies provided in Dechezlepretre et al. (2011) and complement it with the list of technolo-

gies more specifically relevant to energy-efficiency selected by Popp (2001). This gives us a list

of 1,529 technology classes defined at the 6-digit IPC code.12 We use fractional counts for patents

with several IPC codes. If a given patent specifies two technological fields, among them only one

relevant for our analysis, 0.5 patent will be allocated to the prevailing country/year.

In a second step, we relate patents (coded in IPC) to their sectors of use (coded in ISIC or

NACE), i.e. sectors in which these specific technologies are used in the production process. We

rely on the recently released ALP (‘Algorithmic Links with Probabilities’) concordance table de-

veloped by Lybbert and Zolas (2014) together with the World Intellectual Property Organization

(WIPO). This table makes it possible to link patents and economic data through technology-

industry associations. The authors use a text analysis software and keyword extraction programs

to develop a probability distribution of possible industries with which a patent in a given tech-

nology field may be associated. For each patent, the table provides us with a list of economic

sectors with a corresponding probability.13 In essence, these probability weights blend two types

of links, namely usage and production of technologies (Lybbert and Zolas, 2014), reflecting the fact

that technologies are allocated to industries either because they are used therein, or because the

technology was developed by this industry. Ideally, our study would include only usage links.

Yet, in their robustness analysis, Lybbert and Zolas (2014) find that there are only negligible dif-

ferences between their estimated weights and the weights of other methodologies distinguishing

12The complete list of IPC codes can be provided upon request.
13Several modifications are made. First, because the concordance table developed by Lybbert and Zolas

(2014) provide the sectors of use in ISIC 3.1 code, while our production data is provided in NACE rev.1,
we use the concordance table from the United Nations Statistical Division to match sector codes (available at
http://unstats.un.org/unsd/cr/registry). Second, the output from the concordance table is provided in disaggregated
NACE sectors (1.11, 1.12, 1.13), while EU-KLEMS data is provided only in aggregated NACE (11). We thus simply add
up the weights provided by the table for each of the aggregated NACE codes.
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between sector of use (usage) and industry of manufacture (production) (Lybbert and Zolas, 2014,

p. 537). While the concordance table allows us to screen out green patents that are not being used

in a given sector (e.g. solar technologies in the pulp-and-paper industry), we may be concerned

about two remaining sources of measurement errors.

First, some patents identified as green could still be unrelated to energy consumption. For

instance, end-of-pipe technologies, such as a pollution filter, may be identified as green patents

for their pollution reduction effect, but are not likely to affect energy usage. This could result in

an overestimation of the stock of patents compared to energy-efficient patents narrowly defined,

thereby adding statistical noise and blurring our estimations. To check the relevance of this con-

cern, we identified the sectors of use provided by the concordance matrix for renewable energy

patents (wind, solar, hydro, marine and biomass) for which the energy-saving characteristics are

the least obvious. Most of these technologies are allocated to the sector NACE 40 (Generation of

electricity), as expected, and fall in other industrial sectors with a small probability. As an illus-

tration, wind technologies are allocated with a 0.72 probability to electricity production, but also

with a probability of 0.125 to NACE 29 (Machinery nec). Nonetheless, we choose to keep these

patents in our baseline specification for transparency, in order to avoid arbitrary choices in tech-

nologies where indirect, less obvious energy use reduction could still exist. An overestimation of

the stock of patents could increase the risk finding no statistically significant coefficient when the

true parameter value in fact is significant, but does not prevent us to make conclusive arguments

on parameters found statistically significant as long as these are uncorrelated with the error term.

We provide a robustness specification in Section 4.1 including only patents specifically defined as

energy-reduction technologies, as defined in Popp (2001).

An additional measurement error can arise as, although we use the most comprehensive list

of green IPC codes available, in theory there might exist additional energy-efficient technologies

excluded from our selection. In this case, we might be underestimating the stock of green knowl-

edge, implying that our estimates may be only a lower bound. We provide another robustness

specification in Section 4.1 that includes the stock of non-green patents as an additional regressor,

such as to limit the risk of misidentification of green patents.

Table 1 presents the list of IPC classifications related to each sector and the associated concor-

dance weight from Lybbert and Zolas (2014), for a selection of industries: NACE sectors 21 (Pulp

9



and Paper), 24 (Chemicals), 27 (Basic metals) and 28 (Fabricated Metals).14 For example, the prob-

ability weight between the green IPC class D21C 11 (Regeneration of pulp liquors) and the NACE

sector 21t22 (Pulp & Paper) is 85%. In words, this technology has a probability of 85% of being

used in this sector. We then count the number of patents allocated to each sector of use weighted

by the corresponding probabilities. For example, if there are 10 patents in this IPC classification

in a given year (each with only a single inventor and a single IPC code), a flow of 8.5 patents will

be allocated to this industrial sector. Note that weights for each technology class sum up to one,

such that the total count of patents remains unchanged after being split between sectors of use.

14Note that the concordance weights presented in Table 1 for illustration purposes correspond to aggregated tech-
nology classes (6-digits). By contrast, green patents are selected upstream at a finer level (8-digits). This explains why
some IPC classes in Table 1 seem only loosely related to energy consumption.
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Figure 2: Green patent stocks – sample average

(a) By sector (b) By country

3.1.2 Descriptive statistics of patent stocks

We compute cumulative green patent stocks over the 1970–2005 period for our set of 17 OECD

countries using the perpetual inventory method with a 10% yearly depreciation rate (Verdolini

and Galeotti, 2011) to the counts of patents per sector/country/year. Figure 2a shows the average

patent stock allocated to each sector across countries.15 Sectors with the largest stocks of green

patenting activities are sector 27t28 (Metals), 29 (Machinery nec), 30t33 (Office and accounting;

electrical engineering; medical, precision and optical instr.) and 17t19 (Textiles, textile products,

leather and footwear). In contrast, some sectors have a very low number of green patents through-

out the sample, namely: 15t16 (Food, beverages and tobacco), 25 (Rubber and plastics) and 50

(Sale, maint. and repair of motor vehicles; retail sale of fuel). Figure 2b gives the total number

of green patents per country (aggregated over all sectors). Green innovation appears to be highly

concentrated geographically: most innovation is performed by inventors in Japan, but also in the

United States, Germany and South Korea, as commonly found in the literature. Finally, Figure 3

shows the evolution of the stock of green patents over time (averaged across all 17 OECD coun-

tries in our sample) for a selection of industrial sectors. Patent stocks broken down by industry

increase steadily through time in most cases.

15These are the cumulative stocks of green patents weighted by the inventor fractional counts, and allocated to sectors
by the concordance table.
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Figure 3: Green patent stocks – OECD average

3.2 Input demand functions

We use production data at the industry level from the EU-KLEMS database, March 2008 ver-

sion.16 This dataset is developed from supply-and-use tables to recover energy, materials and

services from total intermediate inputs as provided by National Accounts, and is widely used

to estimate input demand functions (see for example Mulder and de Groot, 2012; Kim and Heo,

2013; Steinbuks and Neuhoff, 2014).17 Data on input quantities and volumes per industrial sector

over the 1970-2005 period are available for the following inputs: energy, material, labor and capi-

tal. Sectoral implicit prices of inputs are recalculated from input expenses (CAP , LAB, IIE and

IIM ) and volume indexes (CAP_QI , LAB_QI , IIE_QI and IIM_QI) available in the the 2008

version of EU-KLEMS. We normalize expenses and divide them by volume indexes (1995 = 100)

to obtain current energy purchaser’s price indexes.18 Table 2 lists the industries included in our

sample.19

Figure 4 presents the share of each input (capital, labor, materials, energy) in total costs, our

16Available at www.euklems.net.
17O’Mahony and Timmer (2009) provide a complete description of the methodologies used to build the EU-KLEMS

dataset.
18Many observations in this dataset (approx. 14%) have negative value for capital. This occurs because capital is

measured as the difference between value added and labor inputs, and because in some sectors, an important fraction
of labor is self-employed. As the wage rate for self-employed is typically unobserved, authors proxy it by using the
wage rate of employed workers. In sectors where the latter is greater than the former, this results in negative values for
capital when the value of employment exceeds the value added, and thus in negative prices for capital. As such, these
observations are dropped from the estimation.

19Some sectors are aggregated to maximize sample size, while others are removed due to missing observation.
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Table 2: Industrial sectors included in the sample

NACE rev. 1 Sector

15t16 Food, beverages and tobacco
17t19 Textiles, textile products, leather and footwear
20 Wood and products of wood and cork
21t22 Pulp, paper and paper products, printing and publishing
23 Manufacture of coke, refined petroleum products and nuclear fuel
24 Chemicals
25 Rubber and plastics
26 Non-metallic minerals
27t28 Metals
29 Machinery nec
30t33 Office and accounting; electrical engineering; medical, precision and optical instr.
34t35 Transport equipment
36t37 Manufacturing nec; recycling
50 Sale, maint. and repair of motor vehicles; retail sale of fuel

main dependent variable, and shows that sector 23 (Manufacture of coke, refined petroleum prod-

ucts and nuclear fuel) is by far the most intensive in energy as a proportion of total input costs,

followed by sectors 26 (Non-metallic minerals), 24 (Chemicals), 25 (Rubber and plastics) and 27t28

(Metals).

Figure 5 plots the evolution of the cost share attributable to energy input over time for various

industries. Overall, the cost share of energy tends to decrease through time and this decline is

particularly strong over the first sample period, from 1980 to 1995.20 Summary statistics of our

dataset are presented in Table B1 in Appendix B.

20One needs to bear in mind that being a share, this variable can also be affected by movements in the consumption
of other inputs. An increase in the use of, say, labor, will mechanically affect the cost share of other inputs. A simple
graphical analysis is thus limited in this respect.
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Figure 4: Cost shares by industrial sector – OECD average

(a) Capital (b) Labor

(c) Energy (d) Material
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Figure 5: Cost share of energy – OECD average

Note: Right-scale used for sector 23, Coke and refined petrol. (dash-dotted line).
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4 Econometric Results

In this section, we present our main results. We estimate the system of equations (6) from

Section 2 sector-by-sector, and recover parameters and corresponding elasticities w.r.t. technology

as defined in Equation (8). We use a one-period lag for knowledge stocks to account for potential

reverse causality between green innovation and energy intensity, which simultaneously allows for

a time lag between disclosure of patented innovation and effective implementation in industrial

sectors. Table 3 shows the estimates of the coefficients for the cost share of energy (βEG and βEt),

the own-price elasticity of energy (ηE,PE), and the elasticity of energy intensity w.r.t. green knowl-

edge stocks (εE,G).21,22 For a given sector, our sample includes 17 countries followed through 31

years. Because previous literature highlighted important differences across countries (Voigt et al.,

2014), all our equations include country fixed effects to account for (country-specific) unobserved

heterogeneity.23

As can be seen in Table 3, the coefficients on green knowledge stocks (βEG) are negative in 10

out of 14 sectors. These results are somewhat consistent with the findings of Popp (2001), where a

negative elasticity of energy w.r.t. energy-efficient technology is observed for 8 out of 13 industrial

sectors, though precise cross-study comparison is limited due to differences in the definition of

sectors and aggregation levels. In terms of magnitude, our median estimate for the elasticity of

green knowledge stocks (εE,G) is -0.027. In other words, a 1% change in the green knowledge

stock decreases the energy intensity by approx. 0.03% in the next period, with a maximum value

of 2.07% found for sector 25 (Rubber and plastics), where the decrease in energy intensity is close

to the sample average but with the smallest patent stock in our sample, as highlighted in Figure 2.

Interestingly, industries with the highest average cost share of energy, i.e. with the highest

potential economic gains from energy productivity improvements – 23 (Man. of coke, refined

petroleum prod. and nuclear fuel), 24 (Chemicals), 25 (Rubber and plastics), 26 (Non-metallic

21Appendix C shows estimated coefficients for additional regressors. Complete parameter estimates for other factor
shares, sector by sector, are provided upon request.

22For price variables, elasticities are reported because coefficients as such provide little interpretation (Binswanger,
1974): the coefficient on the price of energy for the cost share of energy (Pe ∗ E), for example, mixes a direct effect (the
initial increase in price increases the factor share) and a substitution effect (the subsequent decrease in quantity lowers
the factor share), having thus an ambiguous effect.

23An important aspect to consider is that although excluding control variables for energy subsidies, energy export
restrictions, or any exogenous shocks on energy demand, our econometric framework implicitly controls for factors
impacting input prices.
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minerals) and 27t28 (Metals) – all present a negative and statistically significant impact of green

innovation.24 In contrast, some sectors seem less sensitive to green innovation, despite a large

number of patents throughout our sample, as shown previously in Figure 2, namely sectors 17t19

(Textiles, textile products, Leather), 29 (Machinery nec), 30t33 (Office, account.; electric., medic.

and precis. engin.) and 34t35 (Transport equipment). This could again be related to the potential

gains from energy-saving innovation. Indeed, the cost share of energy in all of these sectors is

lower than 2%.25

The coefficient associated with the time trend variable is negative and statistically significant

in 8 out of 14 industries. This result suggests that autonomous technical change could play a role

for the decrease in energy usage in some industries.

Table 3 and Table D1 in Appendix D present the estimates of respectively own- and cross-

price elasticities for energy. The negative elasticities of energy consumption w.r.t. the price of

energy, and, to a lesser extent, the price of capital, suggest that price induced input substitution

also affects energy consumption in most sectors. Furthermore, the estimated values of the own-

price elasticities (ηE,PE) presented in Table 3 provide us with a way to verify the properties of

our cost functions.26 In Table 3, one can see that the own-price elasticity of energy is negative for

all sectors, confirming that energy usage responds negatively to price changes, as expected. The

magnitude of the estimated elasticities are respectively -0.538 and -0.610 for the mean and median

values. A 1% change in the price of energy decreases energy demand by 0.610% in the next period

at the median, close to the range of estimates previously found in the literature.27

24The average cost share of energy for these sectors amounts respectively 67%, 11%, 6%, 10% and 5%, whereas the
average for the rest of the sample is 2.6%.

25The positive and significant impact in NACE 29 could be caused by the vague definition of industrial activities. As
this sector is defined as a residual of machinery and equipment technologies not elsewhere classified, we expect it to
cover a large number of very heterogenous activities. This could affect both the dynamics of energy intensity, as well
as its corresponding allocation of patents.

26A cost function concave in input price reflects non-zero input substitution. This property of concavity of input
demand is not necessarily verified in the case of the translog functional form. Derivation of input price elasticities are
also provided in Appendix D.

27See for example Berndt and Wood (1975), or Popp (2001), who finds an average of -0.680.
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Table 3: Baseline results

Sector N βEG βEt ηaE,PE εbE,G

Food, beverages and tobacco 405 -0.0016*** 0.0002*** -0.765 -0.066
(0.0005) (0.0001)

Textiles, textile products, leather 388 -0.0002 0.0006 -0.331 -0.006
(0.0005) (0.0001)

Wood and products of wood and cork 393 -0.0095*** 0.0010*** -0.656 -0.267
(0.0027) (0.0002)

Pulp, paper and paper prod., print. and publish. 405 -0.0024*** -0.0004*** -0.512 -0.053
(0.0009) (0.0001)

Man. of coke, refined petr. prod. and nucl. fuel 353 -0.0299*** -0.0001 -0.209 -0.044
(0.0054) (0.0005)

Chemicals 405 -0.0064*** -0.0010*** -0.548 -0.056
(0.0023) (0.0004)

Rubber and plastics 403 -0.1394*** 0.0008*** -0.472 -2.066
(0.0402) (0.0002)

Non-metallic minerals 405 -0.0029* -0.0004 -0.452 -0.027
(0.0016) (0.0002)

Metals 405 -0.0023*** -0.0003** -0.418 -0.040
(0.0006) (0.0001)

Machinery nec 405 0.0006** -0.0003*** -0.643 0.031
(0.0003) (0.0001)

Office, account.; electric., medic. and precis. engin. 399 0.0000 -0.0001** -0.610 -0.001
(0.0003) (0.0001)

Transport Equipment 392 0.0002 -0.0004*** -0.845 0.011
(0.0004) (0.0001)

Manufacturing nec; recycling 400 -0.0007 0.0007*** -0.625 -0.027
(0.0008) (0.0001)

Sale, maint. of motor vehic.; retail sale of fuel 388 0.0078 0.0007*** -0.440 0.215
(0.0197) (0.0001)

Median -0.0016 -0.0001 -0.610 -0.027

Coeff. < 0 10 8
Coeff. > 0 4 6

Notes: a Own-price elasticity of energy. b Short run elasticity of energy intensity w.r.t. green knowledge stock. Elastici-
ties calculated using mean predicted input cost shares by sector as described in Section 2. All estimations are by sector,
based on the spec. with domestic stocks of green Triadic patents, with country FE. Standard errors in parentheses.
p***≤ 0.01, p**≤0.05, p*≤0.1.
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4.1 Alternative specifications

In this section we present three alternative specifications. First, hinging upon the difference

in the trend of energy intensity through time observed in Figure 1, we distinguish between the

1975-1990 and the 1991-2005 period by interacting our variables for technology with an indicator

variable for each of the periods. Results are presented in Table 4. As can be seen by the magnitude

of the coefficients and their statistical significance, green patented innovation seems to have a

stronger effect in more recent years, with a median elasticity of -0.057, than in earlier periods,

with a corresponding elasticity of -0.011. We also find a negative, statistically significant impact

of green innovation in the same subset of industries as our baseline specification, for both time

periods.

Second, we include the stock of patents not identified as green, calculated by subtracting the

stock of green patents from the total stock of patents. This affords an indirect mean to control

for the robustness of our identification of patents expected to affect energy intensity, as well as

to account for potential cyclical trends in the number of general patent applications. Estimates

are presented in Table 5. Although multicollinearity could reduce the statistical significance of

some estimated coefficients, we observe that non-green patents do not decrease energy intensity

as consistently as green patents.28 In terms of magnitude, the median impact of non-green patents

is estimated at -0.01, roughly a third of the corresponding statistic for green innovation. Further-

more, estimates for green innovation remain close to our baseline specification: here, the median

elasticity of energy intensity w.r.t. green patents amounts -0.030, compared to -0.027 estimated

previously.

Finally, we present the result of estimations with patent stocks composed only by the subset

of technologies identified as directly related to energy consumption technologies by Popp (2001),

in order to control the robustness of our definition of green patents. Results, presented in Table

6, show that our estimates are robust to this alternative specification, with a median elasticity of

-0.043, of slightly greater magnitude than in our baseline.

28The correlation between the log of the stock of green and non-green patents, as included in our regressions, equals
0.8.
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Table 4: 1975-1990 vs. 1991-2005

Sector N βEG,1 βEG,2 βEt,1 βEt,2 εaE,G1 εbE,G2

Food, bev. and tob. 405 -0.0004 -0.0014*** 0.0001 0.0004*** -0.019 -0.060
(0.0007) (0.0004) (0.0001) (0.0001)

Text, text. prod, leath. 388 0.0024*** 0.0013*** -0.0003*** 0.0007*** 0.079 0.045
(0.0005) (0.0004) (0.0001) (0.0001)

Wood and prod. of wood 393 -0.0008 -0.0048** -0.0003** 0.0008*** -0.022 -0.135
(0.0037) (0.0022) (0.0001) (0.0002)

Pulp, pap., print. and publ. 405 -0.0029*** -0.0039*** -0.0002 -0.0002 -0.065 -0.086
(0.0011) (0.0008) (0.0001) (0.0002)

Man. of coke & petr. 353 -0.0276*** -0.0372*** -0.0001 0.0019** -0.041 -0.055
(0.0051) (0.0043) (0.0005) (0.0007)

Chemicals 405 -0.0080*** -0.0132*** 0.0002 0.0017*** -0.070 -0.115
(0.0025) (0.0019) (0.0003) (0.0004)

Rubber and plastics 403 0.0110 -0.1208*** 0.0003* 0.0015*** 0.162 -1.779
(0.0463) (0.0387) (0.0002) (0.0003)

Non-metal. minerals 405 -0.0039** -0.0085*** -0.0005** 0.0010*** -0.035 -0.076
(0.0017) (0.0013) (0.0002) (0.0003)

Metals 405 -0.0024*** -0.0039*** -0.0002* 0.0005*** -0.041 -0.066
(0.0006) (0.0005) (0.0001) (0.0002)

Machinery nec 405 0.0003 -0.0003 -0.0001* 0.0000 0.019 -0.017
(0.0003) (0.0003) (0.0001) (0.0001)

Office, acc.; elec. eng. 399 -0.0001 -0.0004 -0.0001* 0.0001 -0.004 -0.026
(0.0004) (0.0003) (0.0001) (0.0001)

Transport Equipment 392 0.0001 -0.0008** 0.0000 -0.0001 0.004 -0.047
(0.0005) (0.0003) (0.0001) (0.0001)

Manuf. nec; recycl. 400 0.0005 0.0007 0.0000 0.0007*** 0.021 0.026
(0.0010) (0.0007) (0.0001) (0.0001)

Sale & maint. of mot. vehic. 388 0.0213 0.0333* 0.0003** 0.0008*** 0.589 0.922
(0.0222) (0.0200) (0.0001) (0.0002)

Median -0.0003 -0.0026 -0.0001 0.0007 -0.011 -0.057

Notes: a Short run elasticity of energy intensity w.r.t. green knowledge stock, 1975-1990. b Short run elasticity of
energy intensity w.r.t. green knowledge stock, 1991-2005. βEG,1/βt,1 and βEG,2/βt,2 correspond to the first (1975-1990)
and second (1991-2005) period respectively. Elasticities calculated using mean predicted input cost shares by sector as
described in Section 2. All estimations are by sector, based on the spec. with domestic, green stocks of Triadic patents,
with country FE. Standard errors in parentheses. p***≤ 0.01, p**≤0.05, p*≤0.1.
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Table 5: Green vs. non-green patents

Sector βEG βENG βEt εaE,G εbE,NG

Food, bev. and tob. -0.0014*** -0.0003 0.0002*** -0.061 -0.011
(0.0005) (0.0003) (0.0001)

Text, text. prod, leath. -0.0009 0.0006 0.0006*** -0.030 0.022
(0.0010) (0.0008) (0.0001)

Wood and prod. of wood -0.0073** -0.0015 0.0010*** -0.205 -0.042
(0.0031) (0.0012) (0.0002)

Pulp, pap., print. and publ. -0.0036*** 0.0014** -0.0004*** -0.079 0.031
(0.0011) (0.0007) (0.0001)

Man. of coke & petr. -0.0139* -0.0119*** 0.0004 -0.020 -0.017
(0.0079) (0.0043) (0.0005)

Chemicals -0.0016 -0.0046** -0.0012*** -0.014 -0.041
(0.0031) (0.0020) (0.0004)

Rubber and plastics -0.2638*** 0.0068*** 0.0004** -3.937 0.101
(0.0443) (0.0012) (0.0002)

Non-metal. minerals 0.0014 -0.0039*** -0.0004* 0.013 -0.036
(0.0024) (0.0015) (0.0002)

Metals -0.0017 -0.0006 -0.0003** -0.029 -0.010
(0.0018) (0.0016) (0.0001)

Machinery nec -0.0002 0.0007 -0.0002*** -0.010 0.040
(0.0007) (0.0006) (0.0001)

Office, acc.; elec. eng. -0.0006 0.0006 -0.0001** -0.039 0.037
(0.0006) (0.0005) (0.0001)

Transport Equipment -0.0011* 0.0014*** -0.0004*** -0.065 0.080
(0.0006) (0.0005) (0.0001)

Manuf. nec; recycl. -0.0002 -0.0006 0.0007*** -0.006 -0.024
(0.0010) (0.0008) (0.0001)

Sale & maint. of mot. vehic. 0.0415* -0.0039** 0.0008*** 1.145 -0.107
(0.0240) (0.0016) (0.0001)

Median -0.0013 -0.0004 0.0000 -0.030 -0.010

Notes: a Short run elasticity of energy intensity w.r.t. green knowledge stock. b Short run elasticity of energy inten-
sity w.r.t. non-green knowledge stock. βEG and βENG correspond to green and non-green technologies respectively.
Elasticities calculated using mean predicted input cost shares by sector as described in Section 2. All estimations are
by sector, based on the spec. with domestic, green stocks of granted patents, with country FE. Standard errors in
parentheses. p***≤ 0.01, p**≤0.05, p*≤0.1.
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Table 6: Alternative patent count as in Popp (2001)

Sector N βEG βEt ηaE,PE εbE,G

Food, beverages and tobacco 405 -0.0015*** 0.0002*** -0.766 -0.064
(0.0005) (0.0001)

Textiles, textile products, leather 388 -0.0002 0.0006*** -0.331 -0.006
(0.0005) (0.0001)

Wood and products of wood and cork 393 -0.0374*** 0.0008*** -0.633 -1.043
(0.0109) (0.0001)

Pulp, paper and paper prod., print. and publish. 405 -0.0028 -0.0005*** -0.502 -0.061
(0.0018) (0.0001)

Man. of coke, refined petr. prod. and nucl. fuel 353 -0.0206*** -0.0014*** -0.214 -0.030
(0.0072) (0.0004)

Chemicals 405 -0.0059** -0.0011*** -0.547 -0.051
(0.0023) (0.0004)

Rubber and plastics 403 -0.1846*** 0.0008*** -0.465 -2.739
(0.0445) (0.0002)

Non-metallic minerals 405 -0.0098*** 0.0001 -0.447 -0.089
(0.0019) (0.0002)

Metals 405 -0.0025*** -0.0002** -0.417 -0.043
(0.0006) (0.0001)

Machinery nec 405 0.0005** -0.0003*** -0.643 0.031
(0.0003) (0.0001)

Office, account.; electric., medic. and precis. engin. 399 -0.0002 -0.0001* -0.608 -0.015
(0.0003) (0.0001)

Transport Equipment 392 0.0001 -0.0004*** -0.846 0.006
(0.0004) (0.0001)

Manufacturing nec; recycling 400 -0.0008 0.0007*** -0.626 -0.029
(0.0008) (0.0001)

Median -0.0025 -0.0001 -0.547 -0.043

Notes: a Own-price elasticity of energy. b Short run elasticity of energy intensity w.r.t. green knowledge stock. Elastici-
ties calculated using mean predicted input cost shares by sector as described in Section 2. All estimations are by sector,
based on the spec. with domestic stocks of Triadic patents as defined in Popp (2001), with country FE. Standard errors
in parentheses. p***≤ 0.01, p**≤0.05, p*≤0.1. Sector 50 missing because no patent allocated to this sector.
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5 Conclusion

This paper aimed at quantifying the impact of green innovation on energy intensity of indus-

tries using patent statistics in a multi-sector, multi-country setting. By matching sector-specific

green knowledge stocks based on Triadic Patent Families with input cost functions using EU-

KLEMS data, we have found green innovation to be energy-saving in a majority of industries,

with a median elasticity of -0.03. Hence, a 1% increase in green patenting activities in a given sec-

tor is associated with a 0.03% decline in energy intensity. We find a statistically significant impact

in all energy intensive industries. The largest impacts are found in those industries, and in more

recent years. In addition, non-green patenting activities are found to have an effect of smaller

magnitude – roughly a third – than green patenting ones. In parallel, our estimates for own- and

cross-price elasticities suggest a role for price induced input substitution in the observed decrease

in energy intensity. Our findings are robust to a more restrictive definition of patents expected to

affect energy usage.

The main purpose of our results is to inform policymakers about the magnitude of the im-

pact of green innovation on energy intensity across industrial sectors, thereby contributing to the

empirical body of evidence in favour of policies supporting green R&D. However, our empirical

estimates of the impact of technological change on energy intensity could also serve as an input

for forecasting energy consumption and carbon emissions in CGE models. Our findings could

thus contribute to reduce the existing gap between the empirical and the modeling sub-stream of

the literature on technological change and the environment (Pizer and Popp, 2008; Fisher-Vanden

et al., 2014). We close by suggesting several extensions for future work. First, future contributions

could include more factors potentially affecting energy consumption, such as energy policies for

example. Although these are implicitly captured by the price variables in our estimated equa-

tions, inasmuch as they influence input demand, incorporating explicitly variables measuring

energy policies could help identifying the role of policymaking more clearly. Second, our measure

of elasticity captures the direct impact of green patents. Long term elasticities are likely to be of

greater magnitude as effects accumulate through time. A more complete analysis of these long

term effects remains an important research question, but would require to measure adequately

spillover effects, both across industries and time, for example in a general equilibrium setting.
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Appendix A Parameter Derivation

Appendix A.1 Elasticity of energy intensity w.r.t. technology

εE,G =
∂ln(E/Y )
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=
∂(E/Y )
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Appendix A.2 Standard error of price elasticities

– Cross-price elasticities:

V (ηij) = V

(
βij
si

+ sj

)
=

1

s2i
V (βij)

SE(ηij) =
√
V (ηij) =

1

si
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– Own-price elasticities:

SE(ηii) =
√
V (ηii) =

1

si
SE(βii)
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Appendix B Sample Statistics

Table B1: Descriptive statistics of the dataset

Variable Units Obs Mean Std. Dev. Min Max

Green patent stocks

Year 12,409 1987.7 10.4 1970 2005
Green Patent Stock Patent counts 8,532 18.8 90.35 0.00 1,339

Value of output and input compensation

Output cst. mil. LCU 7,067 2,532,792 1.05*107 0.00 1.92*108

Capital cst. mil. LCU 7,067 315,443 1,360,162 0.00 2.80*107

Labor cst. mil. LCU 7,067 431,445 1,652,491 0.00 2.46*107

Energy cst. mil. LCU 6,124 188,256 1,216,873 0.00 3.00*107

Materials cst. mil. LCU 6,124 1,499,036 6,210,379 0.00 1.07*108

Quantity indexes

Output Index 7,067 0.941 0.352 0.017 5.09
Capital Index 6,773 0.928 0.381 0.014 7.56
Labor Index 6,118 1.042 0.257 0.104 3.46
Energy Index 6,047 1.078 1.429 0.002 63.5
Materials Index 6,047 0.962 0.404 0.017 5.97

Nominal price indexes

Output Index 7,036 0.875 0.314 0.05 4.435
Capital Index 6,742 1.114 1.691 0.00 36.24
Labor Index 6,104 0.874 0.388 0.02 5.537
Energy Index 6,036 1.049 1.024 0.03 27.88
Materials Index 6,036 0.986 2.483 0.07 97.32

Total costs and cost shares

Total costs cst. mil. LCU 9’635 2,290,811 9,293,264 0.00 1.6*108

Capital Percentage 6’911 0.121 0.065 0.00 0.589
Labor Percentage 6’911 0.286 0.123 0.01 0.788
Energy Percentage 6’911 0.087 0.180 0.00 0.973
Materials Percentage 6’911 0.505 0.164 0.00 0.858

Notes: Input compensation and Value of output are in constant mill. local currency. Quantities are indexes (1995 = 1).
Price are calc. from normalized input compensation and indexes of quantities (1995 = 1). Cost shares are calculated
from Total Costs (TC), calc. as the sum of all input compensation
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Appendix C Additional Parameter Estimates

Table C1: Coefficient on price indexes and output level, cost share of energy

Sector βEE βEK βEL βEY

Food, beverages and tobacco 0.0061*** -0.0031*** -0.0029*** 0.0001
(0.0008) (0.0008) (0.0008) (0.0007)

Textiles, textile products,leather 0.0173*** -0.0004 -0.0169*** 0.0011
(0.0014) (0.0007) (0.0013) (0.0010)

Wood and products of wood and cork 0.0098*** -0.0042*** -0.0056*** 0.0036**
(0.0021) (0.0009) (0.0020) (0.0018)

Pulp, paper and paper prod., print. and publish. 0.0199*** -0.0115*** -0.0084*** 0.0032**
(0.0018) (0.0014) (0.0020) (0.0014)

Man. of coke, refined petrol. prod. and nucl. fuel 0.0651*** -0.0433*** -0.0218*** 0.0531***
(0.0035) (0.0027) (0.0020) (0.0049)

Chemicals 0.0389*** -0.0244*** -0.0146*** 0.0217***
(0.0028) (0.0019) (0.0019) (0.0038)

Rubber and plastics 0.0368*** -0.0146*** -0.0221*** 0.0012
(0.0033) (0.0017) (0.0032) (0.0025)

Non-metallic minerals 0.0477*** -0.0266*** -0.0211*** 0.0110***
(0.0026) (0.0021) (0.0023) (0.0025)

Metals 0.0314*** -0.0107*** -0.0207*** 0.0083***
(0.0018) (0.0011) (0.0018) (0.0013)

Machinery nec. 0.0059*** -0.0015*** -0.0044*** 0.0038***
(0.0009) (0.0006) (0.0010) (0.0006)

Office, account.; electric., medic. and precis. engin. 0.0056*** -0.0038*** -0.0018** 0.0014**
(0.0007) (0.0005) (0.0007) (0.0006)

Transport equipment 0.0030*** -0.0025*** -0.0005 0.0023***
(0.0005) (0.0003) (0.0006) (0.0007)

Manufacturing nec; recycling 0.0092*** 0.0014* -0.0106*** -0.0055***
(0.0013) (0.0008) (0.0013) (0.0013)

Sale, maint. of motor vehic.; retail sale of fuel 0.0170*** -0.0055*** -0.0115*** -0.0092
(0.0016) (0.0009) (0.0016) (0.0015)

Mean 0.0224 -0.0108 -0.0116 0.0069
Median 0.0171 -0.0049 -0.0110 0.0027

Notes: Estimates by sector, based on the spec. with domestic, green stocks of granted patents, with country FE. Sectors
51, 52, 60t63, 64, 70, 71t74 missing because of zero green capital stock (see conc. table for details). Standard errors in
parentheses. p***≤ 0.01, p**≤0.05, p*≤0.1.
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Appendix D Elasticities of Substitution

We first derive Allen partial elasticities of substitution (σii and σij) from the coefficients esti-

mated in equation (6):

σij = σji = 1 +
βij
sisj

, i 6= j (D1)

σii =
βii + s2i − si

s2i
(D2)

Since AES cannot be easily interpreted in the case of more than two inputs (Blackorby and

Russell, 1989; Thompson and Taylor, 1995), we calculate cross- and own-price elasticities from the

estimated AES, following Berndt (1991):29

ηij = σijsj =
βij + sisj

si
=
βij
si

+ sj , i 6= j (D3)

ηii = σiisi =
βii + s2i − si

si
=
βii
si

+ si − 1 (D4)

The cross-price elasticity measures the change in the quantity of input xi caused by a change

of the price of input j (for instance, in the case of energy and labor, ηE,PL = ∂lnEi
∂lnpL

where E is

energy demand) and thus has a direct economic interpretation. Substitutability/complementarity

between inputs can be interpreted as follows. Based on cross-price elasticities, input i is a substi-

tute (complement) for input j if ηij > (<) 0. Standard errors for the estimated parameters have

been reconstructed following Binswanger (1974) or Koetse et al. (2008) by using the Delta method

(Greene, 2000).30

In Table D1, we detail our estimates of the elasticity of energy demand w.r.t. to changes in

the price of other inputs. Substitution elasticities found in the (extensive) literature can vary both

in signs and in magnitude, depending on methodological choices on the number of inputs con-

sidered as well as the input used as numeraire (Koetse et al., 2008): there seems to be no clear

consensus on complementarity/substitutability. Estimates of our cross-price elasticities show that

energy demand decreases in response to an increase in the price index of capital in 9/14 sectors,

29The computation of the variance of each elasticity can be found in Appendix A.
30Derivation can be found in the Appendix A.
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Table D1: Cross Price elasticities of substitution (ηEj)

Energy Capital Labor

Food, beverages and tobacco -0.716 -0.004 0.072
(0.035) (0.033) (0.036)

Textiles, textile products, leather -0.380 0.087 -0.248
(0.047) (0.023) (0.045)

Wood and products of wood and cork -0.686 -0.009 0.142
(0.059) (0.025) (0.058)

Pulp, paper and paper prod., print. and publish. -0.511 -0.108 0.145
(0.040) (0.031) (0.044)

Man. of coke, refined petrol. prod. and nucl. fuel -0.229 0.065 0.024
(0.005) (0.004) (0.003)

Chemicals -0.541 -0.023 0.092
(0.025) (0.017) (0.017)

Rubber and plastics -0.372 -0.079 -0.033
(0.051) (0.027) (0.050)

Non-metallic minerals -0.451 -0.072 0.140
(0.024) (0.019) (0.021)

Metals -0.402 -0.064 -0.069
(0.031) (0.018) (0.031)

Machinery nec -0.656 0.038 0.104
(0.048) (0.031) (0.057)

Office, account.; electric., medic. and precis. engin. -0.627 -0.106 0.222
(0.045) (0.032) (0.047)

Transport equipment -0.805 -0.055 0.238
(0.031) (0.020) (0.036)

Manufacturing nec; recycling -0.617 0.166 -0.052
(0.050) (0.031) (0.051)

Sale, maint. of motor vehic.; retail sale of fuel -0.502 0.053 0.216
(0.042) (0.024) (0.045)

Mean -0.535 -0.008 0.071

Notes: Elasticities are calculated at the mean of each cost share

and only 4/14 in the case of labor. This suggests that, on average, energy and capital are gross

economic complements, while energy and labor are gross substitutes. Moreover, Table D1 shows

that energy demand is more sensitive to changes in its own price than in the price of other inputs,

and that the average response of energy demand to the price of labor is greater in magnitude than

to the price of capital, probably because the cost share of labor exceeds the cost share of capital.
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