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Abstract

As of 2020, 770 million people still lack access to electricity worldwide and
10% of this population is in Nigeria. Nevertheless, the country has received
so far little attention in this respect from the academic community. The eco-
nomic literature also does not generally agree on the impact of access to
electricity on education outcomes, despite being the object of several pro-
grammes and policies, and one of the key SDGs of the 2030 Agenda. This
paper aims at filling these gaps in the literature by providing a medium-term
analysis of the effect of village-level electricity access on kids’ schooling in
rural Nigeria. It also contributes to the methodological debate using a novel
instrument in this context, namely the frequency of lightning strikes in the
area surrounding households. The results show that electricity access leads
to an increase in school enrolment and a decrease in the grade-for-age (GFA)
gap, a measure of educational performance. The paper also discusses some
of the mechanisms that can lead to the observed findings, their robustness
and heterogeneity, as well as the role of the quality of electricity received.
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1 Introduction

Access to electricity is a cornerstone of the development process. All advanced

economies have secured the availability and reliability of electricity supply to un-

derpin productivity increases, competitiveness boosts and ultimately economic

growth (Ferguson et al., 2000). In developing countries, the need for affordable

and reliable electricity is even more binding, since it is essential for the provision

of lighting, cooking, heating, mechanical power, clean water, sanitation, health-

care, transport and telecommunication services. The international community has

only recently started to recognize the role of energy for poverty alleviation and

sustainable development. After excluding it from the 2000 Millennium Devel-

opment Goals, the United Nations (UN) launched the Sustainable Energy for All

initiative in 2011. Then, ensuring “access to affordable, reliable, sustainable and

modern energy for all" became one of the 17 UN Sustainable Development Goals

(SDGs) in the 2030 Agenda framework.

Several efforts at both national and international levels have followed, but the

goal to reach universal access to electricity by 2030 is still very far away. There

have been large improvements since 2015, when 1.1 billion people did not have an

electricity source (International Energy Agency, 2016a). However, the COVID-19

pandemic delivered a setback to this positive trajectory and, as of 2020, 770 mil-

lion people still live without access, 75% of which are in sub-Saharan Africa and

especially in rural areas (International Energy Agency, 2016b). Despite optimistic

projections thanks to the planned policies, this share is likely to further increase

because of population growth, explaining the rising attention paid to Africa’s rural

electrification. Children are a category that particularly carries the burden of the

lack of electricity access in sub-Saharan Africa, because of the illnesses related to

indoor air pollution, the lack of access to information and the time spent collect-

ing traditional fuels such as biomass and coal, among other things (Barron and
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Torero, 2017; World Health Organization, 2016). These factors, together with the

impossibility of studying during dark hours, have a direct impact on kids’ school

performance and enrolment rates, which in turn affects their human capital.

The literature on the causal relationship between access to (and quality of)

electricity and development outcomes at the micro-level is a relatively recent one.

Impact evaluation studies started to emerge in the early 2010s, mostly with a fo-

cus on labor market and welfare outcomes (Bernard, 2012). The evidence related

to education outcomes is more limited and, as explained in section 2, it still did

not reach clear conclusions about not just the extent but also the very existence of

an impact of electricity access on kids’ schooling. Much of the debate revolves

around the soundness of the identification strategies employed and, in the specific

case of instrumental variables (IV) studies, on the choice of the instrument (see

section 3.2). In general, the variety of the estimated effects depends on a com-

bination of the methodology employed, the timeframe and unit of measurement,

as well as the context analysed. Another gap in the literature is in fact related to

the country under study, since Nigeria has not been the object of careful empirical

evaluations of the impact of electrification, despite being the second country in

the world for number of people without access. The only exception is Salmon and

Salmon and Tanguy (2016), who study the effect on husband-wife labor supply

decisions and with cross-sectional data.

This paper seeks to fill these gaps in the literature by studying the impact of

village access to electricity on household-level outcomes related to kids’ school-

ing, namely the enrolment rate and the grade-for-age gap, a proxy for school out-

comes, in rural Nigeria. Besides contributing to an active debate for which the

body of rigorous evidence is still limited and focusing on an under-studied coun-

try, this paper also provides a methodological innovation. I introduce a novel

instrument in this context, the lightning strikes density in the 30-kilometers area
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around households’ geolocation. Through their negative effect on the quality and

reliability of electricity supply, lightnings can influence both grid expansion, in-

vestments in mini-/off-grid systems and households’ decision to connect, thus be-

ing a promising candidate to tackle the endogeneity issue of access to electricity.

The relevance and validity of this instrumental variable is discussed in sections

3.2 and 5.2. I use three waves of Nigeria’s General Household Survey (GHS) be-

tween 2010 and 2016 and, by employing panel methods, I also eliminate potential

bias concerns related to the presence of unobserved time-invariant heterogeneity.

I find that village-level access to electricity increases the household propor-

tion of kids enrolled at school (extensive margin of education) by about 55% and

decreases the average grade-for-age gap (intensive margin) by 1.2 years, within

the span of three years. These results are robust to varying the IV radius, adding a

second instrument and running overidentifying restriction tests, permuting light-

ning counts across sample households, controlling for migration and using boot-

strapped or jackknifed standard errors (see section 5.2). I also find that the impact

for households with direct access to electricity is larger than the average effect

for households in connected villages, and that, after accounting for sample selec-

tion, electricity reliability (measured by the frequency of blackouts) has a positive

impact on education’s intensive margin. Conversely, only the results for the ex-

tensive margin are heterogenous along the wealth and gender axes, with poorer

households and households with a higher proportion of boys enjoying greater en-

rolment benefits from electrification. This effect seems to be driven by a larger

time endowment, in particular the lower need to collect firewood, rather than by a

reduction in child labor.

The remainder of the paper is organised as follows: section 2 provides a review

of the related literature and of the electricity context in Nigeria, together with the

conceptual framework underlying the analysis; section 3 illustrates the identifica-
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tion strategy; section 4 describes the data and provides some descriptive statistics;

section 5 presents the results and their robustness; section 6 discusses the hetero-

geneity of the main results and potential mechanisms; section 7 concludes and

offers some policy recommendations.
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2 Background and context

The literature on the development impacts of access to electricity is a relatively

recent one. The last decade has witnessed a surge in the attention towards the role

of energy access and reliability, but the number of rigorous impact evaluations on

the subject is still low (Bayer et al., 2020). Moreover, most of the available studies

focus on the impact of rural electrification programs on income or consumption,

health and labor market outcomes (Tagliapietra et al., 2020). Despite its relevance

for countries’ human capital accumulation, productivity increases and long-term

development, evidence on the education effects is instead quite limited and incon-

clusive so far (Bonan et al., 2017).

Most studies find positive impacts of rural electrification on both the extensive

margin (enrolment, attendance rates and completed years of education) and the

intensive margin (test scores, literacy rates and other schooling outcomes) of edu-

cation. These findings span several regions across the globe, from Latin America

(Lipscomb et al., 2013; Barron and Torero, 2014; Arraiz and Calero, 2015; Gro-

gan, 2016, respectively in Brasil, El Salvador, Peru and Colombia) to South Asia

(Khandker et al., 2014; Van de Walle et al., 2017; Khandker et al., 2013; Bridge

et al., 2016, respectively in India, Vietnam and Nepal) and sub-Saharan Africa

(Daka and Ballet, 2011; Bensch et al., 2011, in Madagascar and, with mixed evi-

dence, in Rwanda), although the latter is relatively less represented.

A few recent studies, however, report statistically insignificant educational

outcomes, in particular Burlig and Preonas (2016) for India, Kudo et al. (2019)

for Bangladesh and Lee et al. (2020b) for Kenya. The former employs a regres-

sion discontinuity design and the other two rely upon a randomized controlled

trial (RCT). Bayer et al. (2020) notice in fact that, in general, experimental ev-

idence in the context of household electrification tends to produce fewer posi-

tive findings than quasi-experimental or observational studies, such as those using
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difference-in-differences and instrumental variable designs. Their systematic re-

view highlights how, among a selection of 19 education-related impact evaluations

of electrification, all observational studies generated positive results against 33%

of experimental studies, with the remaining presenting neutral results.

RCTs are commonly considered the “gold standard" of research and tend

to have high internal validity, especially because randomization, if well imple-

mented, solves the issue of self-selection into treatment. Nevertheless, they are

not exempt of issues, particularly when it comes to external validity (Basu, 2014;

Deaton and Cartwright, 2018). In particular, there are at least four types of po-

tential threats to RCTs’ external validity, namely Hawthorne effects, general equi-

librium effects, special care in treatment provision and specific sample problems

(Peters et al., 2018). While RCTs are a precious source of evidence, particularly

in the context of access to electricity which is difficult to randomize, they suffer

from their own specific issues and their evidence should be read within the context

of the larger body of literature.

Importantly, experimental studies do not all point in the same direction, which

shows the limits of their external validity, even assuming a perfect internal one.

For instance, a very similar experiment in El Salvador (Barron and Torero, 2014)

and Kenya (Lee et al., 2020b), where economic incentives for households to con-

nect to the grid were randomized to elicit exogenous variation, led to different

conclusions with respect to educational outcomes. Another point on which the

literature does not agree on is the differential effect of access to electricity by gen-

der. With respect to schooling outcomes, several papers find a larger impact on

girls than on boys (Khandker et al., 2013; Lipscomb et al., 2013; Van de Walle

et al., 2017), while others do not find significant differences by gender (Khandker

et al., 2012; Burlig and Preonas, 2016; Lee et al., 2020b), which could be due to

the different cultures in the countries under study.
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The variety of reported results can be thus attributed to a mix of the context

analysed, the methodology employed, the timeframe and unit of measurement,

and the type of intervention under study (Lee et al., 2020a). A lot more evidence

from rigorous impact evaluations using different identification strategies is thus

needed to better quantify the impact of access to electricity on different develop-

ment outcomes. This paper aims at contributing to this debate within the context

of children’s education.

2.1 The electricity context in Nigeria

As of 2016, the last year in the survey data, 45% of the Nigerian population had

access to electricity, with the access rate standing at 55% and 36% in urban and

rural areas respectively. That is, 98 million people still lacked access to electricity

in Nigeria (International Energy Agency, 2016a). This figure has been improving

importantly over the last two decades, with average access to electricity increasing

from 40% in 2000 to 55% in 2019, but very far away from the goal of attaining

an overall access rate of 75% by 2020 and of 90% by 2030, as stated in “Nigeria

Vision 2020".1 Out of the 770 million people without electricity access world-

wide in 2020, about one in ten lives in the largest African economy (International

Energy Agency, 2016b).

As shown in Figure 1, the national average access rate hides large geographic

heterogeneity. The northern and eastern states have much lower shares of house-

holds electrified than states in the western and southern parts of the country, where

the major cities are located. This paper focuses on rural areas, where the access

to electricity gap is generally much larger and filling it would have a more impor-

tant impact on development outcomes. Moreover, as explained in section 3, the

1“Nigeria Vision 2020" is an economic plan prepared by the Nigerian National Planning Com-
mission in 2009 to articulate the Federal Government development strategy for the period 2009-
2020.
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Figure 1: Average electricity access by state in Nigeria

Source: Nigeria’s General Household Survey 2016.

employment of lightning strikes as an instrument for access to electricity works

better in rural areas, where households are more dispersed and the extension of

transmission lines to reach them is higher.

The country has low levels of electricity consumption per capita, averaging at

146 kWh during the 2010-14 period, against both similar countries in the region

(336 kWh in Ghana and 232 kWh in Ivory Coast) and the sub-Saharan African

average of 494 kWh.2 This is the result of both low generation capacity and a

very unreliable supply of electricity, which has historically been one of the main

obstacles for the successful development of the country. In 2014, according to

the World Bank Enterprise Survey (WBES), among firms that experienced at least

one blackout during the year (77.6% of the total), the average number of power

outages is 32 per month, with an average length of 8 hours. More than half of

surveyed firms, in fact, identify electricity as a “very severe" or “major" obstacle

2World Bank Development Indicators.
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for their operations and more than 30% state that it is the main obstacle (Alby

et al., 2013; Emodi and Yusuf, 2015).

The relevance of this problem can be easily extended to education. For in-

stance, without electricity, kids cannot study during dark hours, thereby reducing

the number of potentially productive hours and creating a conflict with other activ-

ities (such as working on the field or helping with household chores). This in turn

can have an impact both on school performance and on the likelihood that a kid

actually enrols at school. As explained in the next subsection, the availability of

reliable electricity can also activate other channels that impact the extensive and

intensive margins of education, such as access to information, increased health

status and time endowment. Furthermore, the relevance of these matters tends to

be even more pronounced in rural areas.

The past two decades have witnessed several attempts by Nigerian policymak-

ers to tackle or at least mitigate the issues of the electricity sector. The government

created the Electric Power Implementation Committee in 2000, which drafted two

key policy documents: the 2001 National Electric Power Policy and the 2003 Na-

tional Energy Policy. They had the overarching goal to better exploit and optimize

the use of Nigeria’s vast fossil and renewable energy resources. Some of the mile-

stones of these programs related to the private sector’s increased role in energy

generation and distribution, such as by privatizing the National Electric Power

Authority (NEPA) and by incentivising independent power producers to enter the

Nigerian market. Moreover, in 2014, the government created National Integrated

Power Project (NIPP), a special body to push forward government-backed inde-

pendent power projects to increase generation capacity and then, in 2015, it pro-

mulgated the Electric Power Sector Reform Act to fast-track the incorporation of

NEPA (Ogunleye, 2017).

These initiatives had different outcomes. While 10 different projects for about
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$13 billion were already initiated through the NIPP initiative by 2007, the priva-

tization of NEPA, which started in 2010, was only completed by 2013. Clearly,

unbundling such a large public utility firm was a complex operation. The NEPA

was in fact composed by six generation companies, one national transmission

company and eleven distribution companies. Moreover, this reform involved also

the modernization of the associated regulatory and fiscal regimes (see Ogunleye,

2017). Currently, the government is completing the second wave of the privatiza-

tion reform, by selling its stakes in the ten power projects developed through the

NIPP. Also this process is taking more time than planned, since delays and issues

related to gas supply have negatively impacted many of these projects’ bankabil-

ity. During the COVID-19 pandemic, within its recovery plan, the government

approved a plan which aims to connect 25 million people with access to elec-

tricity through incentives to off-grid solar businesses and financing of solar home

systems (International Energy Agency, 2016b).

2.2 From electrification to schooling outcomes

Regardless of the research design or intervention analysed, most studies in the lit-

erature surveyed at the beginning of this section have a similar conceptual frame-

work. Access to electricity and sometimes its qualifiers (quality of the electric-

ity received, connection costs, etc.) affect some development outcomes (e.g.

consumption, income, labor supply, business creation or educational outcomes)

through channels enabled by the use of electricity via some appliances or services.

This kind of conceptual framework can be applied to the case of kids’ schooling,

as outlined in Figure 2.

A household can have access to electricity through three main sources: con-

nection to the national grid, to mini/off-grid systems and via autonomous solutions

(like generators and solar panels), or any combination of these options. The focus
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Figure 2: Conceptual framework relating area electrification and education out-
comes

Source: author’s own elaboration.

on this paper is on the first two solutions, which both imply the electrification also

of the area - at the minimum the village - in which the household lives. This is key

for the instrument choice, as lightning strikes can affect the proper functioning of

either the powerplants, generators or transmission lines involved in both the grid

and mini/off-grid solutions, as explained more in detail in the next section. In fact,

the vast majority of surveyed households (86.5%) get electricity directly from the

grid and 7.1% of the sample from mini/off-grid solutions. Some households use a

combination of the national or decentralized grid and generators (5.6%), while the

exclusive use of autonomous solutions is instead a residual option, represented by

less than 1% of the sample under study (see Table 1).

In the sample, as shown in Table 2, 45.6% of households have their village

connected. Among these, 78.3% of households have a direct access to electric-

ity, having paid the connection fee and bills for their consumption. This number

hinders heterogeneity along the wealth axis, with households in the richest quin-
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Table 1: Household sources of electricity

Source Frequency Percent Cumulative

NEPA only 3,033 86.5 86.5
NEPA/generator 165 4.7 91.2
Rural electrification 246 7.1 98.3
Rural electricity/ generator 31 0.9 99.2
Private generator only 26 0.7 99.9
Solar panel 4 0.1 100

Total 3,505 100.0

Source: Nigeria’s General Household Survey 2010-2016.

tile twice as likely to be connected than households in the poorest quintile. The

remaining 21.7% of households in connected villages, while not having direct

access to electricity, can potentially enjoy partial benefits from the village being

connected, due to sharing and stealing of electricity, and other spillovers from the

area’s electrification. To include these hardly quantifiable effects in the analysis,

I use as the main explanatory variable the village rather than the household elec-

trification status.3 This also estimates the average treatment effect (ATE) on all

households, as the policymaker’s goal is ultimately to quantify the overall bene-

fits of extending access to electricity to the part of the population that is not yet

connected.

Figure 2 presents the case for both households with direct and indirect access

to electricity, and how they are linked to the improvements in the extensive and

intensive margins of education, here represented by school enrolment and output

measures. The literature identified four main channels. Lighting is the most ob-

vious one: thanks to electricity kids can increase their study time in dark hours,

as shown by Kanagawa and Nakata (2008), Barron and Torero (2014) and Kudo

et al. (2019). The second channel relates to the higher time endowment for study-

3For a comparison of the village and household access to electricity effects, see section 6.1.
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Table 2: Household-level and village-level access to electricity

Household Village connected Total
connected 0 1

0 5,258 966 6,224
(54.1%) (9.9%) (63.9%)

1 34 3,478 3,512
(0.3%) (35.7%) (36.1%)

Total 5,292 4,444 9,736
(54.4%) (45.6%) (100%)

Source: Nigeria’s General Household Survey
2010-2016.

ing that kids, especially girls, gain from saving time on other household chores,

such as fuel wood collection (Khandker et al., 2014; Arraiz and Calero, 2015).

The third one relates to the improvements in health, nutrition, access to informa-

tion and fertility reduction brought about, among other things, by the ownership

of electrical appliances (Burlando, 2014; Grogan, 2016; Fujii et al., 2018). The

fourth channel is linked to the job creation and welfare enhancements derived from

electrification: this channel may both raise the financial means of households to

send kids to school or increase the opportunity costs of education and thus child

labor (Squires, 2015; Bridge et al., 2016; Kumar and Rauniyar, 2018).
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3 Methodology

3.1 Specification

In the analysis of the impact of electricity access, there are two sorts of issues

that need to be taken into account: unobserved time-invariant heterogeneity and

endogeneity of the main explanatory variable of interest. It would be then naïve

to employ a simple least squares regression model:

yit = α +βEit + γ
′xitxitxit +(µi +θt +uit) (1)

where yit is the outcome variable for household i in year t (the proportion

of kids enrolled at school or the average grade-for-age gap), Eit is household’s

access to electricity and xit is a vector of covariates. Then there is the error term,

composed by µi, the unobserved time-invariant household effects, θt the year fixed

effects and uit , the residual error term.

As households’ access to electricity can be correlated with the household-

specific effects, it produces a correlation between the explanatory variable and the

unobserved error term, thus biasing the estimates of β , my coefficient of interest.

Therefore, I exploit the panel nature of the data through a fixed effects (FE) model,

which operates a within transformation of the variables. This is equivalent to

performing a least square estimation on model (1) after that all variables have

been demeaned using the individual means across time periods, as in (2).

(yit − yi) = β (Eit −Ei)+ γ
′(xitxitxit −xixixi)+(θt −θ)+(uit −ui) (2)

Clearly, covariates in xit that are time-invariant will be wiped out together with

the individual fixed effects and the constant term, so only covariates that have

some degree of variation over time are included. For each econometric specifica-
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tion I also perform a Durbin-Wu-Hausman test which, by rejecting the consistency

of the random effects model in all instances, confirms the soundness of employing

the fixed effects model.

Still, in this type of studies, the estimate of β is not free from concerns, namely

the endogeneity bias. As identified in most of the literature on the socioeconomic

impact of electrification, access to electricity cannot be considered exogenous to

many outcomes of interests. Grid extension, the choice of villages targeted by

the roll-out of electrification programs and the decision by a household to pay for

the connection may in turn depend on the outcome variables, or the two can be

co-determined by other factors. This simultaneity issue would lead to wrongly

estimating the effect of access to electricity (Roller and Waverman, 2001; Duflo

and Pande, 2007; Rud, 2012; Grogan and Sadanand, 2013). I nevertheless test in

each regression for the endogeneity of access to electricity using the Hausman test

with a null hypothesis of no correlation between covariates and error term.

3.2 Identification

To tackle the endogeneity concerns, I employ an instrumental variable procedure.

A valid instrument is a variable that is correlated with the endogenous explanatory

variable (access to electricity) but that has no direct effect on the dependent vari-

able after controlling for the covariates. Several instruments have been proposed

in the literature, from solar radiation intensity to a time series of hypothetical

electricity grids based solely on geographic cost considerations (Lipscomb et al.,

2013; Salmon and Tanguy, 2016). In the survey data I have access to four of

them which are relevant to this set up: household distance to the grid, household

distance to the nearest power plant, population density at the local government

authority level and land gradient at the site of the household (Dinkelman, 2011;

Grogan and Sadanand, 2013; Chakravorty et al., 2014; Van de Walle et al., 2017).
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However, of these four variables only one satisfies the instrument validity and

relevance conditions in this context. The household distance to the grid may not

satisfy the exogeneity condition, given that the extension of the grid to different

areas of the country is often driven by political and economic motivations, hence

its endogenous placement could favour households more likely to also enjoy bet-

ter socioeconomic characteristics. Land gradient has also been criticized as an

exogenous instrument (see Bensch et al., 2020) and it is time-invariant, making it

useless in a panel setting, whether one uses a first differences or a within transfor-

mation approach. LGA population density may directly affect other development

outcomes as well (such as job availability), and if used as an ex-ante character-

istic it would also not have any within variation. The household distance to the

nearest power plant is a more plausibly exogeneous IV, as the location of power

plants depends on the presence of energy sources rather than on the distance to

the areas that will be electrified. I employ this as an auxiliary instrument in some

regressions, but its low variation over time does not make it the ideal candidate to

be employed in the main identification strategy.

I use as primary instrument for access to electricity the average monthly fre-

quency of lightning strikes in the area surrounding the household, also called flash

density. To the best of my knowledge, it has never been used as an instrument

in the microeconomic literature studying the development impacts of household

electrification. It was first introduced by Andersen et al. (2012) who examine

labor productivity growth in US states and argue that a higher flash density is as-

sociated with lower speed of IT diffusion, by causing voltage instability and thus

damaging digital equipment. It was then employed by Andersen and Dalgaard

(2013) to instrument power outages and study their impact on economic growth

in cross-country regressions across sub-Saharan Africa. The only micro-level evi-

dence is Millien (2017), who establishes the link between households’ decision to
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connect to the grid and lightning intensity through its effect on electricity supply

reliability. Using lightnings as an instrument for power outages severity, he finds

a 0.67 elasticity between the likelihood of a household to connect to the grid and

electricity reliability.

As a geoclimatic variable, it varies over time and space (see section 4.2) and

is strongly correlated with access to electricity, both at the village and household

level, regardless of the set of covariates employed (see section 6.1). With also

relatively high Kleibergen-Paap Wald F-statistics, the IV thus satisfies the rele-

vance property, which is further proved with the robustness checks in section 5.2.

The first stage relationship is negative and strong: a higher intensity of lightning

strikes in the area around the household geolocation increases the likelihood of

damaging generators and transmission lines and, as a result, decreases connec-

tion rates (Andersen and Dalgaard, 2013). This happens because lower expected

quality and reliability of electricity supply may negatively influence the likelihood

both of households to connect to the grid and of grid extension to the village or

area by the planner, which is in line with the evidence from Kennedy et al. (2019)

and Millien (2017). A similar argument applies to mini- and off-grid solutions,

which anyway represent only 8% of total sample connections.

Lightning density is also an arguably exogenous instrumental variable since

it does not directly affect the outcome variables, conditional on covariates. It is

definitely an external instrument in the sense of Deaton (2010). However, to be a

valid instrument it needs to fulfil the exclusion restriction of zero correlation with

the error term. Despite being to a large extent a random climatic phenomenon, a

threat to validity could come from its potential correlation with other geoclimatic

factors (e.g. rainfall), which can in turn affect agricultural output and then school-

ing outcomes. I therefore control, in the full specification, for other key geocli-

matic variables at the household area level: annual mean precipitations, annual
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mean temperature and a potential wetness index created by World Bank experts.

Interestingly, when adding these covariates, neither the coefficient of lightning

strikes in the first stage regressions nor the coefficient on access to electricity in

the reduced form regression of both outcome variables are significantly impacted,

with both point estimates and significance levels remaining almost identical (see

section 5.1).

Additionally, one could hypothesize that other unobservable socioeconomic

factors correlated with both the instrument and the outcome variables may become

a source of endogeneity. For instance, richer households could live in areas where

the negative impact of lightnings on electricity supply and reliability, and therefore

on schooling outcomes, is less pronounced (e.g. due to the quality of transmission

cables). First, to have any effect, these factors should vary within the time span

of 3 years (the distance between panel waves), otherwise they would be wiped

out by the within transformation. Second, they should be uncorrelated with the

other time-varying household-level demographic and socioeconomic covariates

I control for. Besides the “usual suspects" such as age of the household head,

number of kids, proportion of female and of employed household members, I

include a wealth index to account for household economic status.4 Moreover, I

also control for whether the household owns a generator, given its importance as a

replacement power source, as well as for the distance to the nearest market and to

the nearest population centre, which reflect local labor market conditions (Grogan

and Sadanand, 2013).

However, the validity of the exclusion restriction is never completely out of

question. To provide further proof of the soundness of my identification strat-

egy I perform several robustness checks in section 5.2. In particular, employing

4The wealth index is based on a principal component analysis (PCA) over the ownership of 16
household goods not requiring electricity, the possession of a bank account, the source of drinking
water, the type of toilet accessible in the household, the quality of the walls and the number of
people per room, following Rutstein (2008).

19



household distance to the nearest powerplant as a second exogenous instrument,

I test whether the validity of the main IV is rejected using the Sargan-Hansen

overidentification test. Secondly, I implement Nevo and Rosen (2012) imperfect

instrumental variable inference test, which relaxes the IV exogeneity assumption.

Thirdly, I perform a placebo test by randomly permuting the count of lightning

strikes across households to check whether first stage regressions are actually

driven by random geographic noise. The identification strategy survives all ro-

bustness tests. Finally, with respect to inference, all regressions are reported using

heteroscedasticity-robust standard errors clustered at the household level. I also

check whether bootstrapping or jackknifing standard errors alters the significance

of the main results, and section 5.2.5 confirms that it remains virtually unaffected.
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4 Data and descriptive statistics

4.1 Data

The main source of data for this paper is the General Household Survey im-

plemented by the World Bank under the Living Standard Measurement Study

(LSMS) series, together with the National Bureau of Statistics of Nigeria. Since

2010, the panel component of the GHS surveyed 5,000 households selected from

500 enumeration areas, to be repeated every 2 to 3 years. These households were

selected to be representative of all geopolitical zones of Nigeria at both the rural

and urban level, and were visited twice, once between August-October at the end

of the planting season and once between February-April after the harvest. Given

that all variables of interest are included in the post-harvest visits, I employ the

latter as the main dataset and replace missing observations with post-planting in-

formation whenever available. Households are fairly evenly divided across the six

geopolitical zones, with the highest share being located in the North Western area

(19.2%) and the lowest share in the North Eastern area (13.5%).

Of the 5,000 households initially sampled, 4,917 responded to the question-

naire in the first wave of 2010-2011. From these, I restrict the focus to the 3,380

households living in rural areas, where the analysis is more compelling. As fami-

lies move to other regions and states over time, they cannot always be tracked so

that, by the third wave of 2015-2016, only 3,171 households of the original ru-

ral households were still present in the sample (in the second wave in 2012-2013

there are 3,369 rural households). Furthermore, during the last wave, a tracking

visit was conducted after both post-planting and post-harvesting visit so to identify

and interview as many households as possible among those who moved following

one of the previous waves or in between visits. Overall, the attrition rate is quite

low, at 3.9%, especially if compared to other household surveys in similar coun-
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tries. To avoid attributing to electricity access changes in the outcome variable

which are connected to migration choices, in the robustness checks I control for

those households who moved in between waves.

The main outcomes of interest of this paper capture two key dimensions of

kids’ schooling: enrolment rate for the extensive margin and grade-for-age gap

for the intensive margin of education. Both dependent variables are measured for

kids in schooling age (between 5 and 15 years old) and at the level of household,

which are both the panel identifier and the unit of analysis. In fact, this helps

capturing intra-household dynamics, as choices related to kids’ schooling are in-

terdependent. Consequently, the enrolment rate is the proportion of kids within

the household that are enrolled at school in the current year. Similarly, the grade-

for-age gap is the average difference in years, across kids in a household, between

the grade in which the kid should be enrolled given his/her age and the actual

grade in which he/she is enrolled. For instance, as mandatory schooling in Nige-

ria starts at the age of 6, a 7-years-old kid enrolled in the first grade will have a

grade-for-age gap of 1 year, and the higher the gap the worse. This measure incor-

porates information on grade repetition as well, and thus indirectly reflects school

performance which is not available in the survey data (Islam and Choe, 2013).

The main explanatory variable of interest is access to electricity at the village

level, obtained from the GHS survey, which is a dummy variable taking value 1

if the village is connected to an electricity grid (NEPA or a decentralized one)

and 0 otherwise. In a robustness check I also employ the household-level access

to electricity as explanatory variable, but the village access is preferred for most

specifications since, as explained, it incorporates potential spill over effects, in-

cluding the sharing and stealing of electricity, and it better captures the ATE. For

data on the other electricity-relevant variables, namely household distance to the

grid and to the nearest powerplant, I rely on external data sources. Specifically,
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information on the transmission grid network of medium and high voltage lines is

from the West African Power Pool GIS database, accessible through the energy-

data.info portal, while power plant location information comes from Platts.

My main instrumental variable is the flash density, measured as the average

monthly number of lightning strikes in the area surrounding the household in the

two years preceding the survey. The time window has been chosen to incorporate

seasonal fluctuations and to be long enough to potentially influence factors affect-

ing grid expansion and households’ decision to connect. The land surface over

which lightning strikes are counted is the area defined by a 30 kilometres radius

around the household geolocation. This choice is both data driven, to maximize

the first stage regressions’ strength, and defined to include the average household

distance from the grid. In a robustness check I also vary this radius to 20 and

50 kilometres. The lightning data have a 0.05°x0.05° spatial resolution and have

been manipulated using the NASA’s Earthdata API. They were obtained from the

Science Data of NASA’s Lightning Imaging Sensor (LIS), a space-based lightning

sensor aboard the Tropical Rainfall Measuring Mission (TRMM) satellite, which

has high detection efficiency, is capable of removing the background signal and

has a millisecond precision (Blakeslee, 1998).

4.2 Descriptive statistics

Table 3 presents the summary statistics of the main variables utilized in the anal-

ysis, thus for all rural households, including their number of observations, mean,

standard deviation, minimum and maximum. As mentioned in section 2, the sam-

ple average of the village electricity access stands at 45.6%, while the household-

level access is somewhat lower, at 36.1%, both with significant variation across

the sample. The latter figure is remarkably close to the 2013 rural electrification

access rate reported for Nigeria in the 2015 World Energy Outlook, 36.5% (In-
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ternational Energy Agency, 2016a). With respect to the outcome variables, the

enrolment ratio of household kids averages at 0.81, while the grade-for-age gap

(which is available for slightly fewer households) at 1.87, and also their sample

variation is relatively high.

Table 3: Descriptive statistics

N Mean SD Min Max

Village electricity access 9,738 0.46 0.50 0 1
HH electricity access 9,736 0.36 0.48 0 1
Enrolled ratio 6,672 0.81 0.36 0 1
Grade-for-age gap 5,327 1.87 1.14 0 7.8
Blackouts 3,490 2.69 0.62 1 3
Lightnings 9,812 5.42 3.03 0.08 17.6
Distance to grid 9,812 24.5 24.6 0.01 133.3
Distance to powerplant 9,812 130.3 97 2.13 465.6

Source: Nigeria’s General Household Survey 2010-2016.

As expected, the average frequency of blackouts among households with ac-

cess to electricity is quite high (this categorical variable ranges from 1 for house-

holds never or rarely experiencing power outages, to 3 for blackouts happening

every day). 78.4% of sample households have power outages at least every week

and only 3% of households never experience them, which indicates the low level

of the quality of electricity received in Nigeria. The average monthly number of

lightning strikes in the 30-kilometres radius area around households in the two

years preceding the survey is 5.4, and it ranges between 0.1 and 17.6. As men-

tioned, the radius employed to obtain this instrumental variable has been chosen

also to include the average household distance from the grid, which is 24.5 kilo-

metres. The average household distance to the nearest powerplant, the additional

IV used in some specifications, is much larger, at 130.3 kilometres.

Figure 3 presents the Kernel density estimates, for each year, of the average
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electricity access by local government authority, in terms of the proportion of

households whose village is connected. The figure shows that, in my sample, the

average LGA connection rate increased over time, both between 2010 and 2013

and between 2013 and 2016. Figure 3 also shows that there are many LGAs with

close-to-zero or almost complete (above 80% of households) access to electricity.

This suggests that electrification is likely to take place in a relatively homoge-

neous way within local government authorities, potentially for peer effects be-

tween households (Bernard and Torero, 2015). Conversely, the differences across

LGAs are due to both their average economic status and other household charac-

teristics, as well as the non-homogeneous unfolding of the national electrification

strategy, factors that I aim to account for with the identification strategy outlined

in section 3.

Figure 3: Kernel density function of average access to electricity in LGAs

Source: Nigeria’s General Household Survey 2010-2016.
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Figure 4 and Figure 5 show the geographic and time variation of the lightning

strikes instrument. The number of flashes varies across the country’s surface, with

a more intense activity in the southern, western and central northern areas. There

is also large lightning variation across time, mainly due to seasonal cyclicality

(each bar of Figure 5 is a month), but year patterns are also somewhat differ-

ent from each other. This explains the choice of aggregating this variable across

the two years preceding the survey year, together with the need to be a signifi-

cant timeframe for influencing economic agents’ decisions. In fact, as shown in

the next section, this instrument has a strong predictive power with respect to both

village-level and household-level access to electricity in the first stage regressions.

Figure 4: Geographic distribution of lightning strikes (average 2008-2015)

Source: TRMM-LIS Data Science, NASA.
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Figure 5: Monthly distribution of lightning strikes in Nigeria (2008-2015)

Source: TRMM-LIS Data Science, NASA.

Figure 6 presents histograms of the two main dependent variables, by village-

level access to electricity. These charts already present the essence of the main

results of this paper, although at a very descriptive level. The school enrolment

rate of kids in households whose village is connected to electricity is on average

higher than that of households whose village is not connected, with a larger share

of households having all their kids enrolled at school in the former than in the

latter (see panel a). Similarly, the average grade-for-age gap is lower in house-

holds whose village is connected to electricity, with a larger share of households

in which kids have no grade-for-age gap against households in non-connected vil-

lages (see panel b). The next section analyses more thoroughly these relations.
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Figure 6: Histograms of the dependent variables by village access to electricity

(a) Panel a: household proportion of kids enrolled at school

(b) Panel b: average household kids’ grade-for-age gap

Source: Nigeria’s General Household Survey 2010-2016.
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5 Results

5.1 Main results

Following the methodology described in section 3, Table 4 presents the main IV-

FE results with the proportion of household kids enrolled at school as dependent

variable. Each specification adds a set of covariates to the previous one to show

the evolution of coefficients, of their statistical significance and of some other

statistics. Column 1 only contains the instrumented main explanatory variable,

village access to electricity, besides household and year fixed effects. Column

2 adds the demographic covariates (age of the household head, share of female

components of the household and number of kids), while column 3 includes other

household-level socioeconomic variable (share of employed household members,

wealth index quintile, whether the household owns a generator, distance to the

nearest market and to the nearest population centre). Column 4, the full specifi-

cation, also adds the geoclimatic covariates (annual precipitations, annual mean

temperature and potential wetness index).

The Hausman test clearly rejects the simple fixed effects regressions, with p-

values below the 1% level in all specifications, indicating that village access to

electricity is endogenous and instrumentation is thus necessary. Table 4 presents a

negative and statistically significant first stage relation, implying that a higher den-

sity of lightning strikes negatively affects village electrification.5 The strength of

the first stage regressions is supported by high Kleibergen-Paap F-statistics, above

20 in the last two specifications, and is also reinforced by additional robustness

checks presented in the next subsection. Despite the addition of key covariates and

a drop of about 3% of observations in the sample between the first and last col-

umn, first stage coefficients are remarkably stable across specifications. Similarly,

5Full regression tables are available from the author upon request.
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Table 4 also reports stable and statistically significant second stage regression co-

efficients (p-values are around 0.013). The relation is positive and, taking the full

specification as preferred, the point estimates indicate that village-level access to

electricity increases the household enrolment rate by about 55%. This a sizeable

effect on the extensive margin of schooling, which suggests that on average the

lack of rural electrification is a binding constraint for the human capital accumu-

lation of households.

Table 4: IV-FE results: school enrolment rate of household kids

(1) (2) (3) (4)
Dependent Variable Enrolled at school

Village access 0.587** 0.578** 0.539** 0.548**
(0.246) (0.246) (0.219) (0.220)

First stage - DV: village access

Lightnings -0.008*** -0.008*** -0.008*** -0.008***
(0.002) (0.002) (0.002) (0.002)

Year and household FE YES YES YES YES
Demographic covariates NO YES YES YES
Socioeconomic covariates NO NO YES YES
Geoclimatic covariates NO NO NO YES

Observations 6,215 6,189 6,016 6,016
Number of households 2,328 2,323 2,277 2,277
First stage R-squared 0.007 0.011 0.024 0.027
K-P F-statistics 17.4 17.2 20.9 20.1
Hausman test (p-value) 0.006 0.007 0.007 0.006

Note: robust standard errors clustered at household level in parentheses. *** p<0.01,
** p<0.05, * p<0.1. Source: Nigeria’s General Household Survey 2010-2016, author’s
own elaboration.

Table 5 presents the IV-FE results for the grade-for-gap, a proxy for school

output, as outcome variable. It follows the same structure as in Table 4. Hausman
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tests indicate the presence of endogeneity of the electrification variable, first stage

relations are strong and statistically significant, and Kleibergen-Paap F-statistics

are well above the standard threshold of 10. The reduced form coefficients, as

expected, indicate that village electrification decreases the grade-for-age gap, by

about 1.2 years on average (column 4). This negative effect, which implies an

improvement of the intensive margin of schooling, has a p-value of 0.014.

Table 5: IV-FE results: grade-for-age gap of household kids

(1) (2) (3) (4)
Dependent Variable Grade-for-age gap

Village access -1.196** -1.292** -1.234** -1.220**
(0.530) (0.555) (0.499) (0.494)

First stage - DV: village access

Lightnings -0.008*** -0.008*** -0.009*** -0.009***
(0.002) (0.002) (0.002) (0.002)

Year and household FE YES YES YES YES
Demographic covariates NO YES YES YES
Socioeconomic covariates NO NO YES YES
Geoclimatic covariates NO NO NO YES

Observations 4,737 4,715 4,591 4,591
Number of households 1,801 1,796 1,763 1,763
First stage R-squared 0.008 0.012 0.027 0.029
K-P F-statistics 15.7 14.9 17.6 17.8
Hausman test (p-value) 0.006 0.004 0.003 0.003

Note: robust standard errors clustered at household level in parentheses. *** p<0.01,
** p<0.05, * p<0.1. Source: Nigeria’s General Household Survey 2010-2016, author’s
own elaboration.
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5.2 Robustness

This section discusses several robustness checks associated with the main results

presented above. First, I ran the baseline results varying the radius of the area

considered for the lightnings instrumental variable. I then examine the IV validity

via an overidentifying restriction test with the help of an auxiliary instrument. The

third robustness check corroborates the evidence on the instrument’s robustness,

including a random permutation of lightning strikes, followed by a test on whether

migration drives the main results. The fifth one relates to inference, where I check

whether bootstrapping or jackknifing standard errors modifies the statistical sig-

nificance of my estimates. In all instances I use the full specification from the

previous section.

5.2.1 IV radius

As mentioned in section 4, the choice of the IV radius is both driven by logical

reasons and data driven. As for the former, the logic is to select a radius that is

close to the mean household distance to the grid (24.5 kilometres), without ex-

tending it beyond what would be the relevant area driving the decisions to expand

and connect to the grid. Here I present the data argument, which is based on

the relative strength of each instrument in the respective first stage regressions.

Moreover, it can serve as a robustness check to test the sensitivity of the results to

varying the radius.

As shown in Appendix A1, the Kleibergen-Paap F-statistics for the 30-kilometres

radius first stage estimates are about twice as much the 20- and 50-kilometres ra-

dius ones. Both first stage and second stage regression estimates are qualitatively

similar: the coefficient on lightnings is always negative and highly statistically

significant, while the effect of village electrification is positive on enrolment and

is negative on the grade-for-age gap. Also the point estimates tell a similar story
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to the baseline ones, from which are not statistically different, in particular using

the 20 kilometres radius. The only not significant coefficient is from the grade-

for-age gap second stage regression using the 50 kilometres radius, which is likely

related to the excessive length of that radius.

5.2.2 IV validity

While the validity of an instrumental variable cannot be directly tested, if a second

or auxiliary exogenous IV is available one can check whether the exogeneity of

both of them is jointly rejected, i.e. one of the two IVs or both are correlated with

the error term, using an overidentifying restriction test. In Appendix A2, I employ

the Sargan-Hansen test and distance to the nearest powerplant as an auxiliary in-

strumental variable. In fact, differently from the endogenous grid placement, the

location of powerplants depends on the presence of the relevant natural resources

(gas, water, etc.) and not on the characteristics of the population served.

The p-values of the Sargan-Hansen test, whose null hypothesis is that the in-

struments are valid, are well above the standard 0.05 rejection threshold for both

outcome variables, which does not prove but reinforces the identification strat-

egy. Unfortunately, the distance to the nearest powerplant instrument is not strong

enough to be employed in the baseline regressions, particularly with respect to the

enrolment outcome variable, because it does not vary much over time. However,

besides reporting the overidentifying restriction tests, Appendix A2 also confirms

that the estimates remain qualitatively similar to the main ones both in terms of

magnitude and statistical significance of the key coefficients.

In addition, I implement the method described by Nevo and Rosen (2012) to

test the construction of bounds estimates in the hypothesis that the instrument

is not valid. Their “Imperfect Instrumental Variable inference" is based on the

idea to replace the assumption of zero correlation between the unobserved error
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term and the instrument with an assumption related to the sign of the correla-

tion. It could be argued in favour of a correlation in both directions, but for each

dependent variable I assume the sign that would risk to make the main results

insignificant, i.e. negative for enrolment and positive for the grade-for-age gap.

The imperfect IV test, implemented following Clarke and Matta (2018) with both

robust and bootstrapped standard errors, leads to bounds estimates that clearly get

closer to zero, but never include it. Therefore, even relaxing the IV exogeneity

assumption, the general messages of this paper would hold.

5.2.3 IV robustness

Despite the strength of the first stage regressions already presented so far, an in-

strument obtained from a geoclimatic phenomenon like lightning strikes may still

create weak instrument concerns. In this subsection I tackle the issue in two ad-

ditional ways. First, I employ the weak IV robust test proposed by Olea and

Pflueger (2013). This test computes the “Worst Case Bias" (WSB) in case of

weak instrument, the critical values associated with different scenarios depending

on how large the actual bias is compared to the WSB, and an effective F statis-

tic. The latter is then compared to the critical values of each scenario (e.g. 10%,

20%, 30%, etc. of the WSB). For both outcome variables, the test indicates that

the 20% bias scenario is rejected but not the 10% one. However, the effective F

statistic is just slightly larger than the critical value associated with the 10% bias

scenario, suggesting that lightnings can overall be deemed a strong instrument in

this context.

The second approach is in the spirit Kelly (2019) and tests whether the first

stage regressions are mostly identified by spatial noise from the instrument. I per-

form a permutation test by randomly assigning the lightning strikes observations

to different households, re-run first stage and reduced form regressions, extract
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the relevant t-statistics from both and repeat these steps 1000 times. It is thus a

placebo test in which I assume that the relations I find could be driven by any

lightning density in my sample and check whether I do find statistically signif-

icant results in these replications. Appendix A3 presents the distribution of the

t-statistics of four sets of replications based on the instrument permutation: for

the lightnings coefficient in the first stage regressions (panels a and b) and for the

access to electricity coefficient in the reduced form regressions (panels c and d),

for each of the dependent variables.

The absolute value of a t-statistic above 1.96 indicates that the correspond-

ing regression would have been significant at the 5% conventional level (2.58 for

the 1% level and 1.645 for the 10% level). In the lightning permutations asso-

ciated with the first-stage regressions (panels a and b), there are less than 5% of

t-statistics above 1.96 or below -1.96. In the reduced form permutations (panels c

and d), the percentage drops to zero for both outcome variables. This indicates that

very few placebo first stage regressions and no placebo reduced form regressions

would randomly be statistically significant, implying that the baseline results are

not driven by random geographic noise.

5.2.4 Migration

It could be argued that households may migrate towards regions where electricity

is available or away from areas in which the supply reliability is deemed too low.

In this case, my results would be biased upwards by migration patterns. This can

be tested in my sample, since households have been followed over time and a

variable coding migration status is included in the survey data. In Appendix A4

I report the baseline regressions (columns 1 and 4), next to the results from the

same specification with the addition of the migration dummy (columns 2 and 5)

and with dropping migrated households (columns 3 and 6), for each dependent
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variable. The results in each set of regressions are substantially identical, with

point estimates remaining very similar and unchanged significance levels. Even

if the migration dummy is significant at the 10% level in the grade-for-age gap

results, it has no meaningful effect on the access to electricity coefficient.

5.2.5 Inference

The statistical significance of the results could be biased by incorrectly specifying

how standard errors are calculated. As Young (2019) shows, the normality and

i.i.d. assumptions are often rejected in many IV applications and the bootstrap

can reveal severely asymmetric confidence intervals. Moreover, jackknifing can

show that the results, especially first stage ones, are sensitive to eliminating spe-

cific observations. I thus re-ran all baseline regressions in their full specification

both jackknifing (in square brackets) and bootstrapping with 1000 replications (in

braces) the standard errors. Appendix A5 presents the results: the conclusions

about inference of the estimates are virtually the same, with no change in the

significance levels and standard errors only marginally larger. In addition, I also

cluster standard errors at the LGA level: some p-values become larger, but the

main findings do not qualitatively change.6

6Results are available upon request from the author.
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6 Discussion and mechanisms

6.1 Village and household access to electricity

The main analysis carried out so far assessed the impact of access to electricity

at the village level to include potential spill over effects to non-connected house-

holds in connected villages (which are slightly more than one fifth of all house-

holds in electrified villages). However, it is clearly of interest to also learn what

is the estimated effect for households that have direct access to electricity. The

decision to connect obviously depends on the balance between benefits and costs

(e.g. connection fee, consumption bills, etc.), but also on the expected quality

and reliability of the electricity supply (see section 6.5 for a discussion on this).

Therefore, lightnings strikes can be used as an instrumental variable also for the

household-level access to electricity. Table 6 compares the results for each out-

come separately using the two electrification explanatory variables and the full set

of covariates.

As expected, the point estimates for household-level access to electricity are

larger than the village-level ones, especially for the grade-for-age gap dependent

variable. This suggests that kids in households with direct access enjoy larger

benefits in terms of schooling outcomes than the average household in a connected

village. It is important to note that the Kleibergen-Paap F statistics are lower in the

household access results, especially in the grade-for-age gap case. This implies

that the corresponding first stages are weaker than the village access ones, which

are then better suited for the main analysis. Nevertheless, the first stage estimates

are very close in the two specifications, with estimates just slightly lower in the

household access one, and the significance levels for both first and second stage

and for both outcome variables are exactly the same.
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Table 6: Village-level and household-level access to electricity

Enrolment Grade-for-age gap

Village access 0.548** -1.220**
(0.220) (0.494)

Household access 0.638** -1.718**
(0.276) (0.812)

First stage - DV: village access

Lightnings -0.008*** -0.007*** -0.009*** -0.006***
(0.002) (0.002) (0.002) (0.002)

Year and household FE YES YES YES YES
Demographic covariates YES YES YES YES
Socioeconomic covariates YES YES YES YES
Geoclimatic covariates YES YES YES YES

Observations 6,016 6,014 4,591 4,590
Number of households 2,277 2,276 1,763 1,763
First stage R-squared 0.027 0.030 0.029 0.032
K-P F-statistics 20.1 14.9 17.8 8.5

Note: robust standard errors clustered at household level in parentheses. *** p<0.01, **
p<0.05, * p<0.1. Source: Nigeria’s General Household Survey 2010-2016, author’s own
elaboration.

6.2 Wealth heterogeneity

The impact of access to electricity may well differ by household economic sta-

tus. On the one hand, it could be argued that richer households have the financial

means to better exploit the advantages of electrification, for instance by being

able to buy (better) electrical appliances. On the other hand, it could also be ar-

gued that poorer households can enjoy larger benefits from electricity access, as

it makes a larger difference in a context of greater deprivation. In Table 7 I test

whether the baseline results are heterogeneous along the wealth axis, by adding

to the electrification dummy its interaction with the PCA-based wealth index and

instrumenting both with the lightnings IV and the corresponding interaction with
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the wealth index. The interaction is significant only for enrolment and not for the

grade-for-age gap, with a negative sign. This implies that larger benefits from ac-

cess to electricity accrue to poorer households, who are then more likely to send

their kids to school. In fact, at least for the extensive margin of education, this

evidence supports the second hypothesis above, suggesting that electricity access

is a pro-poor policy in the Nigerian context.

Table 7: Heterogeneous results along the wealth axis

(1) (2) (3) (4) (5) (6)
Dependent Variable Enrolled Access Access*Wealth GFA gap Access Access*Wealth

Village electr 0.538** -1.216**
(0.223) (0.492)

Village electr*Wealth -0.096** -0.085
(0.042) (0.108)

Lightnings -0.008*** 0.012*** -0.009*** 0.008***
(0.002) (0.002) (0.002) (0.003)

Lightnings*Wealth 0.001 0.035*** 0.002 0.036***
(0.002) (0.003) (0.002) (0.003)

Year and household FE YES YES YES YES YES YES
Demographic covariates YES YES YES YES YES YES
Socioeconomic covariates YES YES YES YES YES YES
Geoclimatic covariates YES YES YES YES YES YES

Observations 6,016 6,016 6,016 4,591 4,591 4,591
Number of households 2,277 2,277 2,277 1,763 1,763 1,763
First stage R-squared 0.027 0.305 0.029 0.350

Note: robust standard errors clustered at the household level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Nigeria’s General Household Survey 2010-2016, author’s own elaboration.

6.3 Gender heterogeneity

Another dimension in which the literature found differential results is gender.

Similarly to the previous subsection, in Table 8 I interact the village-level ac-

cess to electricity variable with the proportion of girls in the households and add

an interaction of the latter with the lightnings instrument. Also in this case the
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heterogeneity is present only for the enrolment results, although significant at

the 10% level. Households with a higher share of girls enjoy lower enrolment

increases due to electrification than households with more boys. To put it into

perspective, on average, enrolment increases in girls-only households are almost

a third lower than enrolment increases in boys-only households. The point esti-

mate for the interaction in the grade-for-age gap results is not significant, so for

this outcome there is no gender heterogeneity, but it also has the opposite sign of

the main regressor’s coefficient. This evidence suggests that boys seem to be the

main beneficiaries of electrification’s impact on the extensive margin of education.

Table 8: Heterogeneous results along the gender axis

(1) (2) (3) (4) (5) (6)
Dependent Variable Enrolled Access Access*Girls GFA gap Access Access*Girls

Village access 0.619** -1.231**
(0.242) (0.541)

Village access*Girls share -0.197* 0.236
(0.105) (0.263)

Lightnings -0.015*** -0.029*** -0.016*** -0.030***
(0.003) (0.002) (0.003) (0.002)

Lightnings*Girls share 0.014*** 0.054*** 0.013** 0.054***
(0.004) (0.004) (0.005) (0.004)

Year and household FE YES YES YES YES YES YES
Demographic covariates YES YES YES YES YES YES
Socioeconomic covariates YES YES YES YES YES YES
Geoclimatic covariates YES YES YES YES YES YES

Observations 6,016 6,016 6,016 4,524 4,524 4,524
Number of households 2,277 2,277 2,277 1,741 1,741 1,741
First stage R-squared 0.030 0.176 0.033 0.185

Note: robust standard errors clustered at the household level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Nigeria’s General Household Survey 2010-2016, author’s own elaboration.
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6.4 Child labor and time use

The evidence from the previous subsection may raise questions about what drives

the heterogeneous results along the gender axis, and in general what behavioural

mechanisms can explain the findings. Despite having some constraints on the

availability of granular data, I can explore two possibilities related to the time use

of kids. In Table 9 I regress the proportion of kids that are working, typically

in the household field, and the share collecting firewood on the village access to

electricity and its interaction with the proportion of household girls.

Table 9: Child labor and firewood collection

(1) (2) (3) (4) (5) (6)
Dependent Variable Child labour Access Access*Girls Collect firewood Access Access*Girls

Village access 0.163 -0.562**
(0.229) (0.241)

Village access*Girls share -0.113 0.159*
(0.105) (0.096)

Lightnings -0.015*** -0.026*** -0.012*** -0.027***
(0.003) (0.002) (0.002) (0.002)

Lightnings*Girls share 0.014*** 0.049*** 0.009** 0.050***
(0.004) (0.004) (0.004) (0.003)

Year and household FE YES YES YES YES YES YES
Demographic covariates YES YES YES YES YES YES
Socioeconomic covariates YES YES YES YES YES YES
Geoclimatic covariates YES YES YES YES YES YES

Observations 6,127 6,127 6,127 6,867 6,867 6,867
Number of households 2,277 2,277 2,277 2,546 2,546 2,546
First stage R-squared 0.031 0.157 0.024 0.174

Note: robust standard errors clustered at the household level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Source:
Nigeria’s General Household Survey 2010-2016, author’s own elaboration.

The instruments are the same as in Table 8, and they are again all statistically

significant. Interestingly, the estimated effects are not significant for child labor,

but they are for the collection of firewood. In particular, village electrification

reduces the proportion of kids collecting firewood, especially boys, since the in-

teraction term is positive. As a result, the larger enrolment effects estimated for
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boys can be explained by a reduction of the time spent in household chores rather

than in child labor.

6.5 Reliability of electricity supply

Access to electricity is thus important for education, but the quality of its supply

is also key, especially in a context like Nigeria in which power outages are very

frequent (see section 2.1). The issue of electricity reliability has been widely dis-

cussed in the context of firm performance (Adenikinju, 2003; Fisher-Vanden et al.,

2015; Allcott et al., 2016; Cole et al., 2018), but the literature did not extensively

address it with respect to education outcomes (an exception is Chakravorty et al.,

2014). I do not have detailed data about electricity supply and use, but the sur-

vey includes qualitative information on the frequency of blackouts experienced by

households, which I recode into a three-step variable (respectively associated with

the frequency of blackouts “never" or “few times a year", “few times a month" and

“few times a week" or “everyday").

While the blackouts variable can be again instrumented with the lightnings

IV, I also need to take care of a potential sample selection bias, since the power

outages frequency is reported only by households with access to electricity. For

this reason, Table 10 presents the results of a Heckman selection model in which

I regress my two outcome variables on the usual full specification, the blackouts

frequency variable and its interaction with the generator ownership dummy (both

instrumented with lightnings and the corresponding interaction), as well as the

inverse Mills ratio. The latter comes from a selection equation in which the vil-

lage access to electricity is regressed on both lightnings and an auxiliary IV, the

household distance to the nearest powerplant, using a panel Logit model.

The results of Table 10 suggest that the quality of electricity supply, proxied by

the frequency of blackouts variable, significantly affects only the intensive margin
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of schooling and not the extensive one. In fact, a higher frequency of blackouts is

associated with larger grade-for-age gaps. Intuitively, while the decision to enrol

at school can be more easily linked with the availability of electricity, school per-

formance and thus the grade-for-age gap have a tighter connection to home study

time and therefore with the reliability of the electricity received. However, these

findings must be interpreted with caution given the low significance level in the

second-stage regressions and the more limited sample.

Table 10: Blackout frequency (Heckman selection model)

(1) (2) (3)
Dependent Variable Enrolled GFA gap Village access

Blackouts -0.141 0.870*
(0.147) (0.515)

Lightnings -0.120***
(0.020)

Distance to powerplant -0.223**
(0.105)

Mills ratio -0.863 0.987
(1.455) (0.779)

Year and household FE YES YES YES
Demographic covariates YES YES YES
Socioeconomic covariates YES YES YES
Geoclimatic covariates YES YES YES

Observations 1,875 1,641 1,975
Number of households 749 670 684

Note: robust standard errors clustered at household level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1. Source: Nigeria’s General Household
Survey 2010-2016, author’s own elaboration.
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7 Conclusions and policy implications

This paper provides a better understanding of the effects of electricity access on

kids’ schooling outcomes in rural Nigeria, a country that hosts the second largest

non-electrified population in the world. In particular, I study the village-level ac-

cess to electricity since it allows to measure the average treatment effect relevant to

policymakers and incorporates potential spill overs to non-connected households

in connected villages. The outcomes, measured at the household level, are kids’

school enrolment and average grade-for-age gap, respectively as proxies for the

extensive and intensive margin of education. Using panel data, I employ a fixed

effects strategy and instrument the access to electricity variable with the density

of lightning strikes in the area surrounding the household, a novel instrument in

this context.

I find large and positive impacts of rural electrification on both dimensions of

education. Specifically, it increases enrolment by 55% and decreases the grade-

for-age gap by 1.2 years within the span of three years. These results are robust

to the addition of several demographic, socioeconomic, geographical and climatic

covariates as well as to different tests and checks related to instrument validity,

relevance and inference. I also find that households that have direct access to

electricity enjoy greater benefits than the average households in connected villages

and that the enrolment effects are larger for poorer households. The results for the

extensive margin of education are also larger for boys than for girls. This seems

to be driven by the time channel since kids, in particular boys, have more free

time available from household chores like firewood collection, rather than from

a reduction in child labor. Interestingly, the frequency of blackouts, a proxy for

the quality of electricity supply, negatively affects only the grade-for-age gap after

accounting for sample selection.

This evidence has significant policy implications as it shows that there are
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large education benefits from rural electrification, contributing to the ongoing aca-

demic debate on the topic. Importantly, as less wealthy households enjoy larger

benefits, it also appears to be a pro-poor policy. Furthermore, despite in electri-

fied villages the average access rate is almost 80% and there are spill over effects

to non-connected households, governments should subsidize connection fees and

electricity use. While the evidence on the effectiveness of subsidies is mixed

(Abeberese, 2017; Lee et al., 2020b), the COVID-19 outbreak has increased the

proportion of households under the poverty line and that cannot afford paying

for the bills. As a result, the positive trends in terms of both electricity access

and use have reverted in several sub-Saharan African countries, including Nigeria

(International Energy Agency, 2016b).

There is actually a large potential for government intervention in connecting

households that are “under-the-grid", i.e. close to an already present electricity

grid but that lack the last mile hook up. Leo and Morello (2015) estimate that in

several African countries the grid coverage rate is much higher than the house-

hold access rate, especially in rural areas. As shown in Appendix A6, this is quite

striking for countries like Nigeria and Kenya, where the difference is above 50

percentage points. In particular, the authors estimate that about 31 million Nige-

rians, or 40% or those without access to electricity, live “under-the-grid". Before

more capital-intensive investments like the national grid extension or mini-/off-

grid systems, targeting the last mile hook up and subsidizing connection costs can

be low hanging fruit policies for governments, together with improving service

reliability to reduce power outages.
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A Appendix

A.1 IV radius

Table 11: Robustness check: varying the IV area radius

Enrolment Grade-for-age gap

20k 30k 50k 20k 30k 50k

Village access 0.584* 0.548** 0.975** -1.648** -1.220** -0.883
(0.317) (0.220) (0.406) (0.835) (0.494) (0.605)

First stage - DV: village access

Lightnings -0.010*** -0.008*** -0.003*** -0.011*** -0.009*** -0.003***
(0.003) (0.002) (0.001) (0.004) (0.002) (0.001)

Year and household FE YES YES YES YES YES YES
Demographic covariates YES YES YES YES YES YES
Socioeconomic covariates YES YES YES YES YES YES
Geoclimatic covariates YES YES YES YES YES YES

Observations 6,016 6,016 6,016 4,591 4,591 4,591
Number of households 2,277 2,277 2,277 1,763 1,763 1,763
First stage R-squared 0.024 0.027 0.024 0.026 0.029 0.026
K-P F-statistics 9.0 20.1 10.9 7.6 17.8 11.7

Note: robust standard errors clustered at the household level in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Source:
Nigeria’s General Household Survey 2010-2016, author’s own elaboration.
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A.2 IV validity

Table 12: Robustness check: two IVs and overidentifying restriction test

(1) (2) (5) (6)
Dependent Variable Enrolled Village access GFA gap Village access

Village access 0.632*** -0.975**
(0.232) (0.418)

Lightnings -0.008*** -0.009***
(0.002) (0.002)

Distance to powerplant -0.011 -0.026**
(0.009) (0.013)

Year and household FE YES YES YES YES
Demographic covariates YES YES YES YES
Socioeconomic covariates YES YES YES YES
Geoclimatic covariates YES YES YES YES

Observations 6,016 6,016 4,591 4,591
Number of households 2,277 2,277 1,763 1,763
First stage R-squared 0.027 0.031
Sargan-Hansen test (p-value) 0.286 0.217

Note: robust standard errors clustered at household level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1. Source: Nigeria’s General Household Survey 2010-2016, author’s own elaboration.
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A.3 IV robustness

Figure 7: Robustness check: permutation of lightning IV, distribution of t-
statistics

(a) Panel a (b) Panel b

(c) Panel c (d) Panel d

Source: Nigeria’s General Household Survey 2010-2016, author’s own elaboration.
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A.4 Migration

Table 13: Robustness check: migration status

(1) (2) (3) (4) (5) (6)
Dependent Variable Enrolled Grade-for-age gap

Village access 0.548** 0.545** 0.562** -1.220** -1.214** -1.214**
(0.220) (0.219) (0.224) (0.494) (0.492) (0.495)

Migrated 0.095 -0.479*
(0.158) (0.247)

Year and household FE YES YES YES YES YES YES
Demographic covariates YES YES YES YES YES YES
Socioeconomic covariates YES YES YES YES YES YES
Geoclimatic covariates YES YES YES YES YES YES

Observations 6,016 6,016 6,003 4,591 4,591 4,578
Number of households 2,277 2,277 2,274 1,763 1,763 1,759

Note: robust standard errors clustered at household level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
Source: Nigeria’s General Household Survey 2010-2016, author’s own elaboration.

56



A.5 Inference

Table 14: Robustness check: jackknifing and bootstrapping standard errors

Enrolment GFA gap

Village access 0.548** -1.220**
(0.220) (0.494)
[0.221] [0.500]
{0.255} {0.553}

First stage - DV: village access

Lightnings -0.008*** -0.009***
(0.002) (0.002)
[0.002] [0.002]
{0.002} {0.002}

Year and household FE YES YES
Demographic covariates YES YES
Socioeconomic covariates YES YES
Geoclimatic covariates YES YES

Observations 6,016 4,591
Number of households 2,277 1,763

Note: robust standard errors clustered at household level in parenthe-
ses, jackknifed standard errors in square brackets and bootstrapped
(1000 replications) standard errors in braces. *** p<0.01, **
p<0.05, * p<0.1. Source: Nigeria’s General Household Survey
2010-2016, author’s own elaboration.
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A.6 Living under-the-grid

Figure 8: Household access rate and grid coverage rate in selected sub-Saharan
African countries, rural averages

Source: Leo and Morello (2015).
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